

レーザー微細加工・表面改質技術を用いた バイオチップデバイス開発に関する研究

修腎*

花田

Y. Hanada

1. はじめに

「個々の細胞には個性がある」という概念が生物・医用 分野においてトレンドとなっており,マイクロメートルオ ーダーの微小な実験室を提供するバイオチップを用いた 単一細胞分析・制御・観察法へのニーズが高まっている. バイオチップの作製は,半導体技術を応用したフォトリソ グラフィーが主流となっているが、細胞の種類やサイズ、分 析用途に合わせたバイオチップを日々作製する必要性が ある研究現場では、ラピットプロトタイピング可能なレー ザー加工技術が有効である.バイオチップ材料に関しては, 半導体 Si が当初用いられていたが,現在は顕微鏡下で細胞 を様々な角度から観察しながら分析する必要があるため ガラスやポリジメチルシロキサン(PDMS)などの透明材料 が安価かつ整形し易いため広く用いられている¹⁾.しかし ながら、従来透明材料は培地(水)に比べ比較的屈折率が高 く,細胞を観察する際には,バイオチップ材料との屈折率差 によりバイオチップ内流体構造壁面や微細構造体近傍で は,像がぼやける,影ができるなどの問題が発生する.よっ て,従来バイオチップでは,固体境界面近傍で運動する細胞 や微生物の詳細な観察・分析は行われてこなかった.

上記を踏まえ,本研究では,水の屈折率にほぼ等しい低屈 折率フッ素ポリマーCYTOP²⁾に着目し、汎用ナノ秒レーザ ーによる表面微細加工技術を確立することでバイオチッ プを作製し,流体構造壁面などの固体境界面における鮮明 な細胞の運動状態遷移を観察することを目的とした.フッ 素ポリマー全般に言えることであるが,CYTOP のマイク ロメートルオーダー以下の微細加工は,ポリマーの高い透 過性や化学的安定性などの優れた諸特性のため加工が困 難とされており³⁾,現状では、シンクロトロン放射光⁴⁾やイ オンビーム⁵⁾, F₂ レーザー⁶⁾を用いた表面微細加工技術に 限られている.しかしながら,これら量子ビームを用いたフ ッ素ポリマー加工技術は、装置の安定性やコスト面から産 業応用には至っていない.また,我々の研究室では,産業化 が進みつつあるフェムト秒レーザーを用いた CYTOP 基板 内部への3次元中空構造⁷⁾や光導波路⁸⁾を作製することに 既に成功しているが、本研究では、産業応用への展開を図る ことを目的として汎用ナノ秒レーザーを使用したフッ素 ポリマーCYTOP の表面微細加工技術の確立を試み、その 加工基本特性を検討した.加工技術確立後のバイオチップ

応用に関しては,細胞が移動できる程度の大きさの微小流 体構造を CYTOP 基板表面に作製し,張り合わせを行うこ とで,3 次元バイオチップを作製した.その後,細胞を培地 と共に流体構造に流し込むことで,流体構造壁面近傍にあ る細胞の詳細な顕微動態観察を試みた.

2. 実験方法

図1に実験装置の概略図を示す.実験では,汎用レーザー にNd:YAGレーザー(波長532 nm, パルス幅500 ps, 繰り返 し周波数1 kHz)を使用した.レーザー光は ND フィルター により出力を調節したあと対物レンズ(×20, NA:0.46)を介 して CYTOP 基板表面に集光照射される.

図1 実験装置概略図

CYTOP 基板を乗せる2軸ステージは、コンピュータ制御に よりマイクロメートルオーダーの精度で駆動する.細胞の サイズに合わせた流体構造を作製する際には、図2に示す ように、x方向にレーザー光を一定のピッチ間隔でずらし ながら、所望するサイズまで多重走査した.

* 弘前大学大学院理工学研究科 准教授

CYTOP 基板表面をレーザーアブレーションすることで レーザー照射領域周辺には、熱影響によるクラックやひび 割れが発生する.また.レーザー照射領域底面もアブレーシ ョンによるデブリや冷却された溶融層による表面が粗い 層が堆積することで荒れた状態になる.アブレーションに よるレーザー照射領域の形状劣化は後に行うウェットエ ッチングにより表面粗さが改善され且つデブリも除去す ることが可能となる.よって、アブレーション後のウェット エッチングでは、レーザー照射領域を選択的にエッチング する溶媒を検討した.表1に検討を行った各種エッチング 溶媒を示す.エッチング溶媒を選択する際には、ポリマーの 溶解性を示す Hansen 溶解度パラメーターが一般的に用い られるが,フッ素ポリマーに関しては本パラメーターが使 用できないことが知られており.エッチング溶媒の選択に ついて不透明な部分が多い³⁾.そこで,表1に示す数種類の フッ素溶媒および溶媒の濃度を調整する希釈溶媒につい て検討することで、レーザー照射領域のみを選択的にエッ チングできるか確かめた.

表1 エッチング用各種フッ素溶媒

	AC-5000	AK-225	CT-SOLV180
Molecular weight [kg/mol]	348.11	202.94	Ave. ca. 150 thousand
Solubility (Undiluted)	0	0	0
Chemical formula	C ₈ H ₅ F ₁₅	C ₃ HCl ₂ F ₅	(C ₁₂ F ₂₇)n
Water	×	×	×
Acetone	0	0	×
Ethanol	0	0	×

その結果,㈱旭硝子社から市販されているフッ素溶媒 AC-6000 をアセトン希釈することで,選択的エッチングを 実現した.数あるフッ素溶媒の中から AC-6000 が高品質な 選択的エッチングを実現した理由については未だ不透明 であるが,AC-6000 が他のフッ素溶媒に比べ高度にフッ素 化していることが原因であると考えられる.

ウェットエッチングにより,アブレーションによるデブ リは除去できるが,レーザー照射領域には表面粗さが残る. そこで,熱処理によるポリマーの流動性を利用することで, エッチングによる表面粗さの改善を試みた.熱処理によ るフッ素ポリマーの流動性は,フッ素原子が骨格構造を覆 う化学構造により,他のポリマーに比べ低いことから,ガラ ス転移温度付近での熱処理による表面粗さ改善は困難を 要する.よって,実験では, CYTOPをガラス転移温度以上で 短時間熱処理することで,表面粗さを改善し,且つアブレー ションにより形成された形状を維持することを試みた.図 3 に,レーザー照射領域をエッチングした後,各温度で熱処 理した際のレーザー照射領域底面の顕微観察像を示す.

CYTOP のガラス転移温度 108℃付近ではポリマーの流 動性は確認できなかったが,図3より175℃の熱処理温度 を約9分間行うことでポリマーが流動し始め,190℃の熱処 理を行うことでレーザー照射領域底面が平坦化する様子 が確認できる.よって,実験では195℃の熱処理を30分間行うことでアブレーション加工痕の形状を維持しつつ加工痕の粗度を改善した⁹⁾.

190℃ (9.	5 min)

図3 各種熱処理温度による CYTOP の流動性

CYTOP の表面微細加工技術を確立した後,表面加工さ れた CYTOP 基板2枚を張り合わせることで3次元流体構 造を含む CYTOP バイオチップを作製し,水棲微生物であ るミドリムシの流体構造壁面近傍における顕微動態観察 を行った.

3. 実験結果および考察

3.1 CYTOP のレーザーアブレーション加工

図4に,異なるレーザーエネルギーで CYTOP 基板表面 にレーザー光を1回走査した際のアブレーション加工結 果を示す.図4(a)はレーザー出力30 mW,(b)は14 mWであ る.ステージ走査速度は300 µm/s 一定とした.図4より,レ ーザー出力を適当に調節することで,熱影響によるクラッ クやひび割れを最小限に抑えることが可能であることを 確認した.

図4 アブレーション加工痕の透過顕微鏡像 レーザー出力(a)30 mW 及び(b)14 mW

3.2 CYTOP 基板表面への流体構造作製

バイオチップ作製では,数マイクロから数百マイクロメートル 程度の細胞サイズに合わせた流体構造を作製する必要があ る.図 2 で示したレーザー多重走査法により流体構造を作製し た際の各工程(a)アブレーション(b)エッチング(c)熱処理におけ る CYTOP 加工痕底面のレーザー顕微鏡像を図 5 に示す.図 5(a,b)より,ウェットエッチングによりレーザー照射領域のみが選 択的にエッチングされ,加工痕底面に堆積したデブリが除去さ れることが確認できる.また,図 5(c)より,エッチングを行った CYTOP を熱処理することで,加工痕底面やエッヂ部分の表面 粗さが改善された.

図 5 (a)アブレーション加工後,(b)エッチング 後及び(c)熱処理後のレーザー顕微鏡像

エッチング後及び熱処理後の加工痕底面の透過顕微鏡及 び原子間力顕微鏡像を図 6 に示す.図 6(a,b)より,熱処理後の レーザー照射領域は,ウェットエッチング後に比べ表面粗さが 改善したことで透過性が向上した.また原子間力顕微鏡による 表面粗さ測定では,熱処理前後でRMS 値 50 ± 10 nm から11 ±4 nm まで改善した.

図 6(a)アブレーション加工後,(b)エッチング 後及び(c)熱処理後のレーザー顕微鏡像

3.3 バイオチップ作製および細胞の動態遷移観察

固体境界面における細胞や微生物の動態遷移観察を行 うことは,細胞や微生物が有するセンサーなどの未知な機 能の解明や癌研究における転移能制御などの観点から近 年,研究が盛んに行われている.バイオチップを使用して細 胞や微生物を固体境界面に近づけ運動の動態遷移を観察 する場合,化学的および物理的な手法が多数存在するが,一 般的な手法として,バイオチップ内の培地や試薬に流速を 与え,流速による流体構造内圧力勾配により流体構造壁面 に細胞を意図的に追いやる手法が簡便であり,細胞のソー ティング応用に用いられている.また微生物の中には,自ら 固体境界面に近づきユニークな運動をするものも存在す る⁷⁾.しかしながら,流体構造壁面などの固体境界面近傍に おける細胞や微生物の顕微観察は,上記した光学的問題に より困難であり,現状では,細胞の力学的な運動メカニズム をシミュレーションより解明する研究や蛍光観察による 動態分析が主なことから,固体境界面における「自然な状 態の細胞や微生物」を顕微観察する研究は行われていなか った.よって,確立したナノ秒レーザーによる低屈折率ポリ マーCYTOP の表面微細加工技術をもとに,細胞や微生物 の流体構造壁面近傍における動態観察を目的とした CYTOP 内部への3次元流体構造付きバイオチップを作製 した.図7に,作製したバイオチップの概略図を示す.

図7 バイオチップ概略図

作製したバイオチップは,2 つのリザ^{*}ーバー (800×800×150 µm)とCYTOP表面から200 µm下に埋め込 まれた中空流体構造(400×1200×50 µm)から成る.このよう なバイオチップを作製するには,2 枚のCYTOP 基板を用い て,ナノ秒レーザーによりリザーバーと流体構造をそれぞ れ作製し,最終的に熱処理により張り合わせることで3次 元流体構造付きバイオチップが作製できる.なお,CYTOP 基板同士の張り合わせは,150℃で30分間の熱処理を行う ことで2 枚のCYTOP 基板を張り合わせた.

バイオチップ作製後,細胞の流体構造壁面近傍における 水棲微生物(ミドリムシ)の遊泳観察を行った.実験では,片 方のリザーバーからミドリムシ及び培地(水)を同時に封 入し,流体構造を培地で満たした後,流体構造壁面近傍を遊 泳するミドリムシのタイムラプス観察を行った.図 8 に CYTOP バイオチップを使用した際の壁面近傍を泳ぐミド リムシの顕微観察結果を示す.また,比較のため,図9に従来 ガラスバイオチップを使用した際の,ミドリムシの動態観 察結果を示す.

図8 CYTOP バイオチップ内の流体構造壁面顕微画像

図 8 より,CYTOP バイオチップを使用した場合には,流 体構造壁面近傍におけるミドリムシの鮮明なタイムラプ ス観察像を得ることができ,ミドリムシがどの箇所で流体 構造壁面に衝突し,動態遷移するか確認できた.

図9 ガラスバイオチップ内の流体構造壁面顕微画像

ー方,図 9 に示す従来ガラスバイオチップを使用したミ ドリムシの動態観察では,流体構造壁面近傍で,観察像がぼ やけ,影ができ,ミドリムシの壁面近傍における詳細な動態 観察ができなかった.

4. 結論

汎用ナノ秒レーザーを用いた低屈折率フッ素ポリマー CYTOP の表面微細加工技術を確立し、本加工技術を用い たバイオチップ作製を行った.レーザー加工を用いたバイ オチップ作製は、国内外の研究機関や大学により行われて おり、用途に合わせた機能を集積した様々なバイオチップ が開発されている.その中で,我々は,低屈折率フッ素ポリ マーCYTOP に着目し、ナノ秒レーザーアブレーションお よびエッチング、熱処理により CYTOP の高品質な表面微 細加工技術について検討した.また,張り合わせによる3次 元流体構造を含む CYTOP バイオチップを作製することで、 固体境界面近傍におけるミドリムシの動態遷移観察を行 い、流体構造壁面におけるミドリムシの鮮明な顕微画像取 得に成功した.我々が開発した CYTOP バイオチップは,従 来バイオチップでは観察不可能な流体構造壁面などの固 体境界面における細胞の動態観察に威力を発揮すると考 えており,これまで行われてきた細胞の動態シミュレーシ ョンや蛍光観察による細胞研究に新たな知見を与えると 期待する.

謝 辞

本研究は、公益財団法人天田財団からの一般研究開発助成 により実施した研究に基づいていることを付記するとと もに、新たなレーザー加工法を確立することができ、更な る研究を進めることができました.ここに同財団に心より 感謝の意を表します.

参考文献

- 北森武彦:マイクロ・ナノ化学チップと医療・環境・ バイオチップ,技術教育出版,東京,(2009)4
- 2) http://www.agc.com/kagaku/shinsei/cytop/
- 澤田英夫:フッ素樹脂の最新動向,シーエムシー出版, 東京, (2013) 57
- 4) Y. Kato, K. Kanda, Y. Haruyama and S. Matsui: J. Electron Spectrosc. Relat. Phenom., 413 (2005) 144.
- N. Fukutake, N. Miyoshi, Y. Takasawa, T. Urakawa, T. Gowa, K. Okamoto, A. Oshima, S. Tagawa and M. Washio: Jpn. J. Appl. Phys., 49 (2010) 065201.
- K. Obata, K. Sugioka, N. Shimazawa and K. Midorikawa: Appl. Phys. A Mater. Sci. Process., 84 (2006) 251.
- Y. Hanada, T.Ogawa, K. Koike, and K. Sugioka: Lab Chip, 16 (2016) 2481.
- Yasutaka Hanada, Koji Sugioka, Katsumi Midorikawa: Opt. Express, 18, 2 (2010) 446.
- Tatsuya Ogawa, Yasutaka Hanada: Appl. Phys. A, 122 (2016) 156.