サーボプレスを用いた押出加工による 高強度・高耐食性 Mg-Zn 合金板材の作製

富山高等専門学校 機械システム工学科
 教授 井上 誠
 (2020 年度 一般研究開発助成 AF-2020022-B3)

キーワード:押出加工,サーボプレス,高純度 Mg-Zn 合金,耐食性

1. 研究の目的と背景

近年、マグネシウム合金は軽量、リサイクル性等の優れた特性により、携帯用電子機器をはじめ、自動車用途への 展開も始まり、構造用材料の需要は増加傾向であり、高純 度マグネシウムは医療材料等への適用の検討が行われている^{1~3)}.

押出加工法は,通常,溶解・鋳造法で作製された円柱状 ビレットを原料に行われるが,マグネシウムの押出加工に おいては,切削切粉の溶解鋳造していない原料をビレット による押出加工の検討が盛んに行なわれており,本研究室 でも真空蒸留法で得られた多孔質な高純度マグネシウム 凝縮物のまま押出加工を行い,清浄な押出材を作製し,特 性の検討を行ってきた^{4,5)}.

また,サーボプレスによる押出加工の研究例はほとんど なく、本研究室では、天田財団平成29年度一般研究開発 助成「サーボプレスを用いた押出加工・圧延加工による超 高純度マグネシウム板材の作製」において検討し、押出温 度375℃、押出比R9~13のサーボプレスによる押出加工 を行い、圧延温度75℃~400℃の圧延加工により超高純度 マグネシウム板材を作製できることを確認した⁶⁾.しかし ながら、引張強さは最大でも175MPa程で、生体内に使用 するには薄肉化が必要で、強度の向上が必要である.

そこで本研究では、サーボプレスを用いた押出加工によ る高強度・高耐食性 Mg-Zn 合金板材の作製について検討し た.

2. 実験方法

図1に真空蒸留措置の概略を示す。真空蒸留は原料 AZ91マグネシウム合金(Mg-9.06%A1-0.68%Zn)300gを 用い,SUS430ステンレス鋼製るつぼ内に挿入し、コンデ ンサ(回収部)および蓋をるつぼ上にのせ、密閉後、油回 転真空ポンプで1Pa未満まで真空排気し、原料温度620℃、 回収温度350℃に昇温し、8h温度保持した。

コンデンサは φ 45mm, 深さ 40mm の穴が 4 個ある構造で, 本実験条件では,1回の真空蒸留試験で φ 45mm,高さ 25mm 程のマグネシウム凝縮物が 4 個回収できた.式(1)から蒸 発率(%)および式(2)から回収率(%)を求めた. 蒸発率(%)=100(W₀ - W)/W₀ ・・(1) 回収率(%)=100(C-C₀)/W₀ ・・(2)

ここで W。は蒸留前のマグネシウム重量(g), W は蒸留後の 原料重量(g), C。は試験前のコンデンサ重量(g), C は試 験後のコンデンサ重量(g)である.

また, Zn 量を増やすために, 純度 99.99%以上, 粒径Φ 3mm~6mmのZn 粒を用い, Zn 量の増加を検討した.

押出加工にはコンデンサで得られたマグネシウム凝縮 物3個1セットを押出ビレットとした.図2に押出加工機 の外観を示す.最大荷重800kNのサーボ駆動プレスの縦型 の押出加工機を使用した.

図3に押出加工機の押出部の概略を示す.真空蒸留で得られたφ45mmの押出ビレットをコンテナ内に入れ,ビレット上にダミーブロックを置き,375℃まで加熱後,1h保持し,パンチを通じて上部から荷重をかけ,ビレット下部のダイスを通じて押出材を作製した。モーションは振り子モーションを用いた.ダイスは幅30mmで,厚さ6mm(押出比R9),厚さ7mm(押出比R8)および厚さ8mm(押出比R7)の3種類を用いた.

図2 押出加工機の外観

図3 押出加工機の押出部の概略

得られた押出材の組成分析は, 試料 1gを採取し, ICP 発光分光分析で混入の恐れのある元素を分析した.

硬さ測定は 15mm×15mm に機械加工した試験片をエメリ ー紙#800 まで研磨し,ビッカース硬さ試験機を用い,荷 重9.8N,試験保持時間 15s とし,10 箇所測定し,最大, 最少を除く8点の平均値を硬さとした.

耐食性試験は,押出材を 30 mm×30 mm に切断し,試験 片の全面をエメリー紙#800 で湿式研磨した.試験条件は JISH0541 に基づいた5%NaCl水溶液,溶液温度 35℃, 浸せき時間 168時間で評価した.また,pH10を保つため に 0.2g/Lの水酸化マグネシウムを溶液に加えた.試験終 了後,試験片に付着した腐食生成物を機械的に除去し,超 音波洗浄後,試験片の重量を測定し,試験前後の重量差を 求め,式(3)から押出材の腐食速度A [mm/year]を算出し た.

$$A = \frac{8.76 \times 10^4 \times \Delta W}{\text{stD}} \text{ [mm/year]} \cdots (3)$$

ここで、**Δ**Wは試験片の重量減少量 [g], S は試験片の 表面積 [cm²], t は浸せき時間 [h], D は試験片密度 [g/cm³]である.

3. 実験結果および考察

3.1 真空蒸留特性

図4に真空蒸留試験前後の原料の外観を示す。試験後の 原料は試験前の形状を残さず溶解しており、溶解しながら Mg および Zn は蒸発していたと思われる.

図5に真空蒸留試験後のコンデンサの外観を示す.凝縮 部中央部の拡大も示す.凝縮物はΦ45mm,深さ40mmの4 個の穴の中に凝縮しており,ほぼ均一な粒径2mm程の粒が 凝縮していた.

図6に真空蒸留試験の蒸発率および回収率を示す.3回の結果を示し、目標蒸発率(原料中のMgおよびZnが全量

試験前 図4 真空蒸留試験前後の原料の外観

凝縮物中央部の拡大

図5 真空蒸留試験後のコンデンサの外観

図6 真空蒸留試験の蒸発率および回収率

表1 原料および押出材の化学組成 (mass%)				
	原料	R7材	R8材	R9材
AI	9.06	<0.0008	<0.0008	< 0.0008
Zn	0.68	0.28	0.48	0.32
Mn	0.22	< 0.0001	< 0.0001	< 0.0001
Si	0.031	< 0.0001	< 0.0001	< 0.0001
Cu	0.0064	< 0.0003	< 0.0003	< 0.0003
Fe	0.0019	< 0.0003	< 0.0003	< 0.0003
Ni	< 0.001	< 0.0003	< 0.0003	< 0.0003
Mg	残	残	残	残

蒸発と仮定)91%を破線で示す.蒸発率は90%程とほぼ原 料中の Mg および Zn は蒸発したものと思われる. コンデン サでの回収率は75%~85%程になった.

3.2 化学組成

表1に原料および押出材の化学組成を示す.得られた押 出材の化学組成はいずれもZn以外の元素は検出されず, 検出限界以下となった.Zn量は0.3%程となった.

3.3 ビッカース硬さ

図7に押出材のビッカース硬さを示す.比較として,純 マグネシウムでの結果を示す⁶⁾.押出材のビッカース硬さ は,押出比の大小に関わらず,平均値が37HV程でとなり, 純マグネシウム押出材に比べ,8HV程大きくなった.これ はZnが0.3%程含有したことにより,固溶硬化したので はないかと思われる.

3.4 耐食性

図8に押出材の腐食速度を示す.押出比 R7 および押出 比 R8 の結果を示す.目標とする腐食速度1.0 mm/yを破線 で示す. R7 材および R8 材は目標値を大きく下回っており 0.1mm/y 程と良好な結果となった.

図9に耐食性試験後の押出材の外観を示す.押出材の外 観も特に目立った腐食は観察できなかった.

3.5 Zn 量増加の検討

AZ91 マグネシウム合金を原料に真空蒸留法によりマグ ネシウム凝縮物を作製し,得られたマグネシウム凝縮物を 押出加工により押出材を作製したところ,硬さが向上し, 耐食性も良好であったので,Zn量の増加の検討を行った. Znは AZ91 マグネシウム合金地金にZn粒をるつぼ中に入 れて,真空蒸留を行い,Zn量増加の検討を行った.図1 0に試験後のコンデンサの外観を示す.AZ91のみに比べ, 凝縮物の粒がかなり不均一に大きくなった.

図10 試験後のコンデンサの外観

図11 試験後のコンデンサの外観

図12 押出材の引張特性

得られた凝縮物の粒が不均一に大きくなったので, Zn 粒を Al 箔で包んで,真空蒸留を行ったところ,比較的均 一な粒の凝縮物を作製できた.

図12に押出材の引張特性を示す. 押出比40での結果 を示す. 3.4%ZnはAl箔ナシの結果で,特性が悪化して いるが, Zn量は4%まで含有し, Zn量の増加とともに引 張強さは大きくなり, 1.5%Zn で200MPa以上となった.

4. 結 論

本研究では,サーボプレスを用いた押出加工による高強

度・高耐食性 Mg-Zn 合金板材の作製について検討した. 得 られた結果をまとめると以下の通りである.

- (1) 原料 AZ91 マグネシウム合金で、真空蒸留を行い、得られたマグネシウム凝縮物をビレットとし、サーボプレスを用いた押出温度 375℃、押出比 R7~R9の押出加工により高純度 Mg-Zn 合金板材を作製できる.
- (2) 押出材の硬さは Zn が含有し、純マグネシウム押出材 より 8HV 程大きくなる.
- (3) 押出材の耐食性は、0.1mm/y程と良好になる.
- (4) マグネシウムの真空蒸留において、Zn 粒を Al 箔で包むことにより、適切なマグネシウム凝縮物が作製でき、 押出比 40、Zn 量 1.5%以上で引張強さ 200MPa 以上となる.

謝 辞

本研究は、公益財団法人天田財団 一般研究開発助成に より実施した研究に基づいていることを付記するととも に、同財団に深く謝意を表します.また、本研究の実験に 従事した真田凌弥氏ならびに本研究の押出加工にご協力 いただいた本校技術室 橋本安弘氏に感謝致します.

参考文献

- 1)日本塑性加工学会:マグネシウム加工技術,(2004), コロナ社.
- 日本マグネシウム協会:現場で生かす金属材料シリーズ マグネシウム,(2009),工業調査会.
- 3)鎌土重晴,小原久:マグネシウムの先端的基盤技術と その応用展開 普及版,(2018),シーエムシー出版.
- 4) 井上 誠, 島 政司, 会田哲夫, 松澤和夫: 軽金属,
 59 (2009), 637-641.
- 5) 井上 誠, 松澤和夫, 会田哲夫, 高廣政彦: 軽金属, **66** (2016), 119-123.
- 6) 井上 誠: 天田財団 助成研究成果報告書, **33**(2020), 140-143.