薄肉タングステン合金のレーザ溶融積層造形法の開発と

宇宙エンジン用電熱ヒータへの応用

名古屋大学 工学研究科 航空宇宙工学専攻 准教授 杵淵 紀世志 (2020年度 一般研究開発助成 AF-2020225-B3)

キーワード:レーザ溶融積層造形,タングステン合金,宇宙推進

1. 研究の目的と背景

1·1 研究背景

気体やプラズマを噴射しその反力を推力とする宇宙用エ ンジンでは、一般にエネルギー源の温度が高いほど性能 (比推力=燃費の指標)が向上する、宇宙での冷却は基本 的に輻射放熱のみであり、水冷等は困難であるため、極限 の高温に耐える耐熱材料の開発は極めて重要である. 高温 を得る方法はいくつか存在する.アーク放電では熱損失が 大きく、原理上 40%以上の高い推進効率(推力パワーと 投入電力の比)は望めない. そこで筆者らは新たに図1に 示す多層の電熱ヒータにより気体を加熱し噴射する「多層 電熱エンジン」を提案した、多層電熱ヒータの製作にレー ザ溶融法 (SLM: Selective Laser Melting) による三次元 積層造形を適用し、ニッケル合金アロイ 718 の 0.2mm の 薄肉造形に成功,製造コストの大幅な削減を達成した.薄 肉壁を流れる電流により壁はジュール加熱される. ガスは 外側から導入され、薄肉壁と熱交換し、最終的に中心軸上 の超音速ノズルから噴射される.多層ヒータは外側ほど低 温,内側に進むほど高温となるため,各層が断熱層の役目 も果たし、本質的に断熱性が高い.実験の結果、90%以上 の熱効率(ガスエンタルピと投入電力の比)を実証した¹⁾. ノズル効率を 80%とすると、70%以上の推進効率が期待 される.これは現在実用化が進んでいるホールスラスタを 凌駕する効率である.また,ホールスラスタほどの比推力 (約 2000 秒)は達成できないが,原理上,比推力と推力 は反比例の関係にあるため,本エンジンは高効率・大推力 という差別化された優位性を有し,優れた燃費と短期間で の目的地への到達を両立する新たな宇宙ミッションを切り 拓く可能性を有している.

前述の通り実験により高効率と大推力を実証したが,加 熱する推進剤の温度はアロイ 718 により 1000K に制限さ れ,燃費の指標である比推力は 400 秒程度に留まり改善が 望まれる.そこで,推進剤温度 2000K (水素利用時で比推 力 700 秒に相当)を目指し,純タングステンに着目しレー ザ溶融法によるヒータ造形に取り組んできた²⁾.レーザ溶 融法による多層ヒータ製作上のポイントは,純タングステ ンの強度・剛性を維持した上での 0.2mm の薄肉かつ 100mm 級の長尺造形である.ヒータの電気抵抗は薄肉, 長尺であるほど大となる.アロイ 718 で実現した肉厚 0.2mm,高さ 100mm であっても,電流 100A・電圧 10V で依然として大電流の作動となり,ケーブルや電気接点で の電圧降下,つまり電力損失が大きくなるため,薄肉化に より電気抵抗を増し電流を抑えつつ,十分な強度を確保す る必要がある.

図1 旧設計:アロイ 718 多層ヒータ(左)と多層電熱エンジン(右)

純タングステンの再結晶温度は純度に依存するが, 1500K~1800K と言われている.従って,1800K 程度で はより急激に粒成長が進むことが知られている.過去にレ ーザ溶融法による3次元積層造形により純タングステンの 試作を試みた結果,レーザ加熱により幅100µm 程度の柱 状の粗大結晶が観察され,これに伴い相対密度,強度とも に低い値に留まった.すなわち,ガス温度2000K を達成 するヒータの実現には,結晶の粗大化を抑制し,強度の改 善を図る必要がある.

1·2 研究目的

結晶粗大化の抑制の方策として、合金化、すなわち図2 に示すように高温でも安定な物質をタングステン中にドー プし、結晶粒界に分散させることで粒成長を抑制すること が考えられる.これにより、粗大化と再結晶の抑制により、 強度の向上が期待される.本研究では、純タングステンへ のドープ物質として酸化ランタン(La2O3)を選定し、添 加の効果を調査する.開発を通し、高品位の合金粉の製作 工程、最適なレーザ溶融条件を見出し、広くレーザプロセ ッシング分野に貢献する.獲得した技術により薄肉・多層 ヒータを実現し、高性能な宇宙用エンジンの他、広く産業 利用可能な高効率の超高温ヒータを提供する.

図3 作製したタングステン・酸化ランタンドープ粉末の SEM 像

2.酸化ランタン・タングステン合金の特性調査 2・1酸化ランタンドープ粉末の作製

まずタングステンへのドープ材としての酸化ランタン を選択し、タングステン・酸化ランタンドープ粉末の作 製に取り組んだ.作製方法として、A 焼結、B 緻密化焼 結、C 緻密化焼結後に酸素除去、以上3 通りの手法を採 用した.作製した粉末の SEM 画像を図3に示す.まず 500 倍の像から理解される通り、A では焼結することな く残存した原料粉が多数存在しており、かつ焼結された ものに関しても粒径のばらつきが大きい.一方、B、C ではこれらの改善が見られる.次に 2000 倍の像を確認 すると、A では粉末が原料粉の形状を留めたまま不完全 に融着しており、形状も凹凸がありボイドも多く見られ る.一方、B、C は A に比べ凹凸やボイドが改善されて いることが確認された.酸素除去を施した C は最終的な 酸素含有量が減少できており、合金化の際の粒界への析

図4 レーザ走査速度とハッチ幅の変更に伴う造形品のボイドへの影響

出による強度低下が改善されると見込まれることから, ヒータ造形時の粉末としてはCを採用することとした.

2・2 レーザ溶融積層条件の最適化

次に,SLM 条件の最適化を行った.ここでは C の粉 末を対象とした.レーザの走査速度とハッチ幅を変化さ せ,造形品のSEM観察を行った.図4に得られたSEM 像を示す.黒色部がボイドを示しており,条件によって ボイドの割合が異なることが分かる.ここではボイドの 少ないハッチ幅,レーザ走査速度ともに最小の条件を最 適条件として見出した.

2・3 高温下における再結晶化の確認

実際のヒータとしての使用時には 2000℃近い高温条 件での作動が課せられる.そこで純タングステン,及び 酸化ランタン・タングステン合金の試験片に HIP (熱間 等方圧加圧)を施し,HIP 後の再結晶の様子を SEM に て観察した.原料粉は B とし HIP の条件は 1200℃/100MPaで4時間保持後,1600℃/200MPaで1 時間保持とした.図5に純タングステンの HIP 前後の SEM 像を示す.本図から,HIP により著しく結晶粒界 が粗大化,つまり再結晶が進行した様子が確認できる. 図6に酸化ランタン・タングステン合金の結果を示す. 純タングステンと比べ,結晶の粗大化,再結晶の進行が 抑制されていることが分かる.すなわち,酸化ランタン のドープは再結晶化の抑制に一定の効果があることが確 認された.

図5 純タングステンの HIP 前後の SEM 像

図 6 酸化ランタン・タングステン合金の HIP 前後の SEM 像

更に調査を進めるため、IPF(逆極点図方位)マッピ ングにより、[100]方向の結晶面の分布を調査した.図 7に純タングステンの結果を示す.明らかな再結晶化に 伴う粗大化が確認できる.一方,図8に示す酸化ランタ ン・タングステン合金では,僅かな再結晶化が確認され るものの,純タングステンに比べ大幅に再結晶化が抑制 されていることがわかる.

図7 純タングステンの HIP 前後の IPF[100]マップ

IPF[100]マップ

2・4 高温引張試験

原料粉Cを用い造形した酸化ランタン・タングステン 合金の引張試験を実施した. As built の他, 1600℃で1 時間熱処理したもの, 前述の HIP 処理したものを準備 した. 常温での引張強さの他, 1600℃で1時間熱処理し たものについては 1600℃の高温下での引張強さを計測 した. 使用した引張試験機は INSTRON 5982 である. 試験結果を表1に示す. 常温 22℃の結果から, 熱処理も しくは HIP により引張強さが向上していることが確認 できる.

AM Wla合金	熱処理	試験温度 ℃	0.2%耐 力 MPa	引張強さ MPa
	As build	22℃	—	152
	1600℃1h	22℃	—	186
	1600℃1h HIP	22°C	_	190
	1600℃1h	1600℃	71	103

表1 酸化ランタン・タングステン合金の引張試験結果

バルクの純タングステン (Stress Relieved) の常温の引張 強さは 1200MPa 程度である.一方,高温では引張強さは 著しく低下し,1600℃では100MPaとなる³⁾.今回 SLMに より造形した酸化ランタン・タングステン合金は,常温で は 200MPa 弱となっておりバルクの純タングステンには大 幅に劣るものの,1600℃での強度低下は 103MPa と半減に 留まっており,かつ一般に強度が低下する積層造形品にも かかわらず,バルクの純タングステンと大差ない強度を保 持していることが示された.すなわち,酸化ランタンのド ープにより高温での強度が大幅に改善されたと言える.こ れは前述の通り酸化ランタンが結晶粒界に析出することで, 再結晶による粗大化が抑制された効果と考えられる.

一方,常温での強度が低い値に留まっている要因は, 酸素の結晶粒界への析出が影響していると考えられる. 今後,酸素含有量の低減による更なる強度の改善が望ま れる.

3. ヒータ造形と高温噴射試験

3・1 ヒータ試作

原料粉Cを用い,酸化ランタン・タングステン合金の 多層ヒータをSLMにより造形した.2.2章で述べたレー ザ走査速度とハッチ幅を採用した.造形後の熱処理等は 実施していない.造形されたヒータの外観を図9に示す. 問題なく造形されていることを確認した.図9のヒータ を組み込んだエンジン組立を図10に示す.

図9 酸化ランタン・タングステン合金製多層ヒータ

搭載したエンジン組立

3.2 高温噴射試験装置

図10の酸化ランタン・タングステン合金ヒータを搭載したエンジンを用い,高温ガス噴射試験を実施した. 実験装置を図11に示す.真空チャンバ内に設置された 推力スタンドにエンジンを搭載し,ロードセルにより推

図11 高温噴射実験装置

力を測定した. エンジン内部の多層ヒータに直流電源を 接続し,定電流にて加熱を行った. ヒータ電流は 100A 固定とした. 推進剤ガスとしては窒素ガスを用い,マス フローコントローラにより 5,10,15,20SLM に流量制御 された窒素ガスをエンジンに投入した. ヒータ内の最も 高温となる最内層の温度を内部に挿入した C 型熱電対素 線により計測し,噴射温度とした.素線挿入の影響が推 進性能に影響しないことは確認済みである.

3.3 高温噴射試験結果

噴射試験により得られた各窒素ガス流量における噴射 温度と推力F及び比推力I_{sp}の関係を図12に示す. I_{sp}は 計測した推力Fと推進剤流量mから以下の式により算出 される.

$$I_{\rm sp} = \frac{F}{g\dot{m}} \tag{1}$$

ここで*g*は重力加速度である.一方,本エンジンのよう に高温気体を超音速ノズルを介し加速,噴射した際に得 られる推力*F*の理論式は以下で表される.

$$F = \dot{m} \sqrt{\frac{2\gamma \bar{R} T_{\rm p}}{M(\gamma - 1)}}$$
(2)

ここで γ は比熱比, \bar{R} は気体定数,Mは分子量, T_p は噴射 温度である.従って理論比推力は式(1)及び(2)より,

図11から,式(3)の理論通り, I_{sp} が噴射温度 T_p の上昇 と共に向上することが確認できる.今回の噴射実験にお ける最高到達温度は1633K,得られた最大比推力は250 秒であった.窒素は分子量Mが28と大きいため,比推 力は低い値に留まっているが,今後,M=2の水素等の 低分子量の推進剤を用い,更なる高温化により一層の高 比推力を目指す計画としている.

各窒素ガス流量におけるヒータ加熱中の電気抵抗の変 化を図13に示す.電気抵抗はエンジンへの電流端子間 の電圧を測定し、ヒータへの投入電流で除することで求 めている.従って、ケーブル等の電圧降下は除かれてい るが、エンジン内部の電気接点における接触電気抵抗は 含まれている.各流量において温度の上昇と共に抵抗が 一度低下する特性は、熱膨張により電気接点における面 圧が上昇し、この接触電気抵抗が低下するためである.

よく知られているように、純タングステンの電気抵抗 率は温度とともに上昇する.図13の通り酸化ランタ ン・タングステンにおいても、接触抵抗の低下の後、純 タングステン同様に温度と共に電気抵抗が上昇すること が確認された.

先行研究 2)における純タングステンのヒータの電気抵抗に対し,酸化ランタン・タングステンの高温での電気 抵抗は 2 割程高くなった.実際の宇宙運用では,ヒータ の電気抵抗を高くし,電流を抑制,電圧を高めることが ケーブルや電気接点におけるジュール発熱,すなわち電 力損失を低減する上で有利である.酸化ランタン・タン グステンは高温強度に加え,電気抵抗が高い面でも純タ ングステンに比べ優れていることが確認された.

図13 噴射温度に対するヒータ電気抵抗の変化

試験前後のヒータ各層の常温での電気抵抗を比較した 結果を表2に示す.高温下で各層の減肉等が生じると電 気抵抗が大幅に増加するため,電気抵抗はヒータの材料 劣化の一つの指標となる.表2の通り,高温を経験した 内層側で若干の変化は見られるものの,1633Kを含む高 温加熱前後でヒータの電気抵抗に大幅な上昇等はなく, 酸化ランタン・タングステン合金が1633K 程度までは 安定であることが示された.今後,より高温の試験を行 うことで,高温下での酸化ランタン・タングステン合金 の安定性等の議論を進める計画である.

我之一日后的电风战htvy发出(平位:11122)				
層番号 外層⇒内層	試験前	試験後		
1(最外層)	0.78	0.88		
2	1.24	1.26		
3	1.30	1.34		
4	1.42	1.40		
5	1.50	1.48		
6	1.78	1.82		
7(最内層)	1.92	2.62		

表 2 各層の電気抵抗の変化(単位 : mΩ)

4. まとめ

宇宙用エンジンの高性能化に向け,高温の推進剤噴射 を達成するため,三次元積層造形(SLM)にて製作す る薄肉・多層の高温電熱ヒータの開発を進めてきた.当 初,高温に達するためヒータ材料として純タングステン を採用したが,高温下での再結晶化と粒径粗大化による 強度低下が課題であった.そこでドープ材として酸化ラ ンタンを選定し,タングステンとの合金化により粒径の 粗大化を抑制し,高温での強度改善を目標とし研究を進 めた.

酸化ランタン・タングステン合金の原料粉の改善,レ ーザ走査の最適化を行った後,SEM と IPF マッピング による結晶観察を行った.純タングステンでは高温処理 後に再結晶に伴う結晶粒の粗大化が観察された.一方, 酸化ランタン・タングステンでは粗大化の抑制が確認さ れた.1600℃の高温引張試験の結果,純タングステン では大幅に高温下において引張強さが低下するところ, 酸化ランタン・タングステンでは引張強さの低下が軽減 され,SLMによる積層造形ながら,1600℃においてバ ルクの純タングステンと同等の引張強さを示し,酸化 ランタン・タングステン合金の高温における優位性が確 認された.

今回見出した条件にて実際に酸化ランタン・タングス テンの多層ヒータを造形し,窒素ガスを推進剤とした噴 射試験を実施した.1633K での作動後の確認では,ヒ ータ各層の電気抵抗に大きな変化はなく,ヒータの健全 性が確認された.今後,より高温での試験を通した確認 を継続していく計画である.

謝 辞

本研究を遂行するにあたり,ご支援頂きました公益財 団法人天田財団に心より感謝申し上げます.

研究遂行にあたり多大なご尽力を頂いた,株式会社 NTT データザムテクノロジーズ蘇亜拉図博士,室蘭工 業大学中田大将先生,名古屋大学佐宗章弘先生に心より 感謝申し上げます.

参考文献

- Giulio Coral, Kiyoshi Kinefuchi, Daisuke Nakata, Ryudo Tsukizaki, Kazutaka Nishiyama, Hitoshi Kuninaka, "Design and Testing of Additively Manufactured High-Efficiency Resistojet on Hydrogen Propellant," Acta Astronautica, Vol. 181, pp. 14-27, 2021.
- Kiyoshi Kinefuchi, Daisuke Nakata, Giulio Coral, Suyalatu, Hitoshi Sakai, Ryudo Tsukizaki and Kazutaka Nishiyama, "Additive Manufactured Single-piece Thin Multi-layer Tungsten Heater for an Electrothermal Thruster," Review of Scientific Instruments, Vol. 92, 114501, 2021.
- 3) Tungsten: Properties & Uses, PLANSEE 社ホームページ https://www.plansee.com/en/materials/tungsten.html