マイクロ材料試験技術を用いた 耐熱チタン合金の塑性変形機構の解明

産業技術総合研究所 工学計測標準研究部門 主任研究員 田中 幸美 (2021 年度 奨励研究助成(若手研究者枠) AF-2021031-C2)

キーワード:チタン合金,微小材料試験,ナノインデンテーション

1. 研究の目的と背景

近年,地球温暖化の原因である CO₂の削減に向けて,輸送機器の軽量化が推進されているが,チタン合金は軽量で 比強度が高いためその利用が増加している.チタン合金を 構成する主な要素は,最密六方構造の α 相および体心立方 構造の β 相である. チタン合金は添加元素や熱処理過程に よってミクロな組織構造が変化し,それに伴って力学特性 も大きく変化する 1^{-21} .近年では,Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242S)や Ti-5.8Al-4.0Sn-3.5Zr-0.7Mo-0.5Nb-0.35Si-0.06C(IMI 834)など,耐熱性を向上させたチタン合金も開 発されており,航空機エンジンの高圧コンプレッサー部材 に適用されている 3^{-41} .それらの合金は高温クリープ特 性など巨視的な材料強度試験により高温下での有用性が 評価されている.一方で,室温下においては,Dwell fatigue

(応力保持を追加した場合の疲労特性)強度の低下が指摘 されており,実際の疲労試験により実証されている⁵⁾.こ のように,室温下であっても高温下であっても,耐熱チタ ン合金の材料強度特性に関して巨視的な材料強度試験に より検証されてはいるものの,変形挙動や強化機構につい ては,いまだ不明確な部分が多い.耐熱チタン合金の塑性 変形挙動のメカニズムを解明するには,微視的な領域に着 目し,単一の結晶粒および粒界の影響や固溶元素の分布等 を考慮する必要がある.

本研究では、微小試験片を用いた材料試験により、耐熱 チタン合金である Ti-6242S および IMI 834 の局所的な力 学特性を評価し、塑性変形メカニズムを解明することを目 指す. 収束イオンビーム (FIB) 装置を用いて数十マイク ロメートルサイズの微小試験片を作成し、引張試験や曲げ 試験を行い、結晶粒のすべり系や粒界等の微細組織の影響 について評価する.また、ナノインデンテーション試験に より単一結晶粒の機械特性について評価する.本研究では、 室温下および高温下での耐熱チタン合金の塑性変形挙動 の違いについて検討する.また、室温下における耐熱チタ ン合金の Dwell fatigue 強度低下のメカニズムについて、微 視的な観点から検討する.

2. 実験方法

2・1 微小試験片の作製

FIB 装置を用いて,複数個の結晶粒を含む数+μm サイズの微小試験片を作成した⁶⁾. 図1に作成した微小曲げ試

験片および微小引張試験片を示す.曲げ試験片は、断面が 正三角形状であり、幅が10µm,長さが40µmの試験片を 作成した.また、引張試験片は、長さと幅がそれぞれ30 µmと10µmになるよう作成し、グリップ部は微小引張試 験機のグリッパー部にはめられるような形状を作成した.

図1 作成した微小試験片6)

2・2 微小材料試験

微小試験片を作成後, チタン合金の微小曲げ試験および 微小引張試験を行った.微小曲げ試験は,室温下では,保 有のナノインデンテーション試験機 (ELIONIX, ENT-2100)を,高温下では,大阪産業技術研究所で借用したナ ノインデンテーション試験機 (Bruker, TI950 Triboindenter) を使用し,曲げ試験片の基部から 30 μm の位置で押込み 試験を行うことにより,曲げ試験を実施した.応力ひずみ 曲線を取得するため,曲げ試験により得られた荷重変位曲 線および曲げ試験片の形状から,応力とひずみを推定した. また,微小引張試験は,研究室が開発した微小引張試験機 を利用して引張試験を行った.試験装置は変位制御方式で

図2 ナノインデンテーション試験によるチタン合金の荷重変位曲線⁷⁾

あり,試験片位置を制御する xyz ステージ,荷重を測定す るロードセル,変位制御が可能なピエゾアクチュエータお よび試験片をグリップするグリッパー部から構成されて いる.引張試験においては,試験装置のグリッパー部に微 小引張試験片をはめ込み,試験を実行した.

2・3 ナノインデンテーション試験

各結晶粒の弾性率および硬さ値を検証するために,ナノ インデンテーション試験を行った.温度変化による結晶粒 の機械特性を評価する際には,大阪産業技術研究所で借用 したナノインデンテーション装置 (Bruker, TI950 Triboindenter)を用いて測定を行った.また,各結晶粒の機 械特性のひずみ速度依存性を評価する際には,ひずみ速度 を変更できるナノインデンテーション装置 (Nanomechanics, iMicro)を用いて測定を行った.

3. 実験結果および考察

3・1 高温下でのチタン合金の変形機構^{6,7)}

耐熱チタン合金である Ti-6242S および IMI 834, および 比較として一般的なチタン合金である Ti-6Al-4V に対して, 室温下および高温下において微小材料試験を行い,温度に よる塑性変形挙動の違いについて検討した.

まず,結晶粒の機械特性の温度依存性を評価するため, 25 ℃および 350 ℃においてナノインデンテーション試験 を行った⁷⁾.図2にナノインデンテーション試験によって 得られた荷重変位曲線を示す.なお,温度依存性のみに着 目するため,C軸が 70°以上であるα結晶粒のみのデータ を示している.全てのチタン合金において,25 ℃よりも 350 ℃の方が,最大押込み深さが大きくなっているが,Ti-6AI-4V が一番大きい差を示した.また,図3に,測定され た硬さ値の平均を示す.こちらも,温度依存性のみに着目 するため,C軸が 70°以上であるα結晶粒に限定した場合 の平均値を示している.硬さ値は,すべての合金において 350 ℃の方が低い値を示していたが,その差は,Ti-6AI-4V が一番大きく,その後Ti-6242S, IMI 834 と差が小さくな った.

次に,結晶粒のすべり挙動や粒界の影響に関する温度依 存性を考慮するため,結晶粒を複数個含む試験片による曲

げ試験を行った⁷⁾. 図4に各チタン合金で生じたすべりを 示す電子顕微鏡 (SEM) 画像および電子線後方散乱回折 法 (EBSD) により解析した結晶方位を示す逆極点図方位 (IPF) マップを示す. α結晶粒のすべりと温度の関係を検 証するために,各合金において25℃と350℃でそれぞれ 実験した試験片を比較して,同様の C 軸傾斜角を持つ結 晶粒を例として示した.すべての合金において,25℃およ び350℃で生じたすべりは同様であり,活性化されたすべ り面が室温と高温の間で変わらなかった.また,図5に曲 げ試験から得られた応力ひずみ線図から得た0.2%耐力の 結果を示す. すべての合金において,0.2%耐力は350℃ での値が25℃よりも低い値を示していた.25℃での0.2% 耐力は3 つの合金全てを比較して大きな違いがなかった のに対し,350℃ではTi-6Al-4V の0.2%耐力がTi-6242S や IMI 834 よりも明らかに低かった.

単一の結晶粒に対する評価が可能であるナノインデン テーション試験および結晶粒界を含んだ評価が可能であ る微小曲げ試験において、どちらも高温での塑性変形に対 する耐性が IMI 834, Ti-6242S, Ti-6Al-4V の順で大きいと いう傾向を得た. したがって,高温環境下において, IMI 834 および Ti-6242S 合金では、チタン合金の複雑な微細構 造に関係なく、各結晶粒が強化されていることが示唆され た. Ti-6242S や IMI 834 では、固溶強化により高温環境下 における α結晶粒内のすべりの活動が抑制されたと考え られる.

3・2 耐熱チタン合金における室温下での Dwell fatigue 低下に関する検討^{6.8)}

耐熱チタン合金である Ti-6242S および IMI 834 は荷重 保持を伴う室温環境下での疲労試験 (Dwell fatigue 試験) を行った場合,通常の疲労試験よりも疲労強度が大幅に低 下することが指摘されている^{9,10)}. Dwell fatigue 強度低 下の要因として, α結晶粒の高い異方性により, 硬い結晶 粒と柔らかい結晶粒の境界で転位が蓄積し,硬い結晶粒側 に応力集中が生じることで,破壊しやすくなることが推測 されている^{5,11)}. また, Dwell fatigue 強度が低下するチ タン合金の場合,結晶方位で区別された硬い結晶粒と柔ら かい結晶粒のひずみ速度依存性が異なることが指摘され ている12~13). 一方で、その多くがシミュレーションに よる検討であり、実験的に評価されている例は少ない.ま た,ナノインデンテーション試験によるひずみ速度依存性 の評価については Dwell fatigue 強度低下を引き起こす Ti-6242 と低下しない Ti-6246 での評価に限られており, その 他のチタン合金では行われていない.したがって、本研究 では, Dwell fatigue 強度の低下に影響を与える要因につ いて明らかにすることを目的として, Dwell fatigue 強度の

図 6 ナノインデンテーションによるひずみ速度依 存性評価 (C 軸角度で分けた場合)⁸⁾

低下を引き起こす Ti-6242S および IMI 834 に対して微小 材料試験を行った^{6,8)}.

図6に、ナノインデンテーション試験によって得られた Ti-6242S と IMI 834 における各結晶粒のひずみ速度依存性 を示している. 先行研究では、六方晶のC軸角度により硬 い結晶粒と柔らかい結晶粒を区別していたため、本研究に おいてもC軸角度が30°以下の結晶粒を硬い結晶粒,60° 以上の結晶粒を柔らかい結晶粒と定義して評価を行った.

図7 ナノインデンテーション試験によるひずみ速度依存性の評価 (AI 濃度で分けた場合)⁸⁾

図6から、ひずみ速度依存性を表す指数 m 値は、Ti-6242S 合金においては硬い結晶粒と柔らかい結晶粒で違 いがみられたのに対し, IMI 834 合金では m 値に違いがほ とんど見られなかった.同じ dwell fatigue 強度の低下を表 す合金であっても,ひずみ速度依存性は異なる傾向を示し た. そこで、単一結晶粒の硬さに影響を及ぼす要因として 考えられる固溶元素に着目して評価を行った. 図7は,エ ネルギー分散型X線分光 (EDS) 分析によって得られる元 素マッピングを基に、結晶粒を Al 濃度の高い結晶粒と低 い結晶粒に分けて評価した場合のひずみ速度依存性を示 している. Ti-6242S においては, Al-rich 領域と Al-poor 領 域の間で硬さ値はほとんど変わらなかったのに対し, IMI 834 においては、Al-rich 領域と Al-poor 領域で硬さ値に明 確な違いが見られた. したがって、Al 濃度の違いによる 硬さ値の違いが,図6で示したひずみ速度依存性の違いに も影響すると考えられる. Dwell fatigue 強度低下の要因と なる各結晶粒のひずみ速度依存性の違いについて考慮す るとき、単に結晶方位による違いだけではなく、固溶元素

濃度の分布による違いについても影響する可能性が考え られる.

また,実際に Ti-6242S および IMI 834 において,荷重保 持によって引き起こされる実際の変形を評価するために, 荷重保持を伴う微小引張試験を行った.変形過程を調査す るため、120秒間の荷重保持(試験機の都合上、実際には 変位保持)を伴う引張試験を2回行った.図8に荷重保持 を伴う微小引張試験の応力ひずみ線図および SEM 像を示 す. Ti-6242S および IMI 834 ともに1回目よりも2回目の 方が降伏する応力が低くなっていることが分かる.また, 結晶方位を表す IPFY マップおよび SEM 像を比較すると, 引張試験2回目後では、柔らかい結晶粒(IPF図では緑や 紫で示されている)から硬い結晶粒 (IPF 図では赤で示さ れている)にかけて大きく亀裂が生じているように確認さ れる.柔らかい結晶粒で発生した変形により硬い結晶粒で の変形が誘導されたように確認され、今までシミュレーシ ョンで考えられてきた理論と同様の変形挙動が実験的に も生じることが示唆された.

4.結論

本研究では,航空機用エンジン材料として用いられてい る耐熱チタン合金を対象に,微小材料試験を用いて,微細 構造の影響を考慮した変形機構を明らかにすることを目 的とした.ナノインデンテーション試験を用いて,各結晶 粒の機械的特性を評価するとともに,微小曲げ試験および 微小引張試験を用いて,数個の結晶粒を含む試験片に対し て材料力学試験を行い,微細構造の不均一性を考慮に入れ た変形挙動評価を行った.これらの試験,評価で得られた 知見を総合し,耐熱チタン合金の塑性変形メカニズムに関 する知見を得た.

謝 辞

本研究は公益残団法人天田財団 2021 年度奨励研究助成 (若手研究者枠)により遂行されたものであり,ここに記 して深甚なる謝意を表します.また,本研究の遂行にあた り,多大なご助言,ご協力を頂いた産業技術総合研究所の 原田祥久博士,服部浩一郎博士に心より御礼申し上げます. さらに,実験に際しご協力いただいた産業技術総合研究所 の名越貴志博士,大阪産業技術研究所の小畠淳平博士に御 礼申し上げます.

参考文献

- I. Polmear, D. StJohn, J.-F. Nie, M. Qian: Light Alloys, fifth ed. (2017) Elsevier
- 2) C. Leyens, M. Peters: Titanium and titanium alloys:

fundamental and applications (2003) Wiley-VCH

- 3) 小柳禎彦:まてりあ, 58 (2019) 188-192
- R.R. Boyer: Materials Science and Engineering A, 213 (1996) 103-114
- 5) M.R. Bache: International Journal of Fatigue, 25 (2003) 1079-1087
- 6) 田中幸美:微小力学試験を用いたチタン合金の変形
 機構解明に関する研究 (2022) 筑波大学博士論文
- Y. Tanaka, K. Hattori, Y. Harada: Metallurgical and Materials Transactions A, 53 (2022) 3827-3832
- Y. Tanaka, K. Hattori, Y. Harada: Materials Characterization, 190 (2022) 112055
- M.D. Zhang, J.X. Cao, X. Huang: Scripta Materialia, 186 (2020) 33-38
- K.U. Yazar, S. Mishra, A. Bhattacharjee, S. Suwas: Metallurgical and Materials Transactions A, 51 (2020) 5036-5042
- A.J. Ready, P.D. Haynes, B. Grabowski, D. Rugg, A.P. Sutton: Proceedings of the Royal Sociaty A, 473 (2017) 20170189
- T.-S. Jun, D.E.J. Armstrong, T.B. Britton: Journal of Alloys and Compounds, 672 (2016) 282-291
- Z. Zheng, D.S. Balint, F.P.E. Dunne: Journal of the Mechanics and Physics of Solids, 96 (2016) 411-427