高速変形域におけるバウシンガ効果の特性取得と

塑性加工の成形性に及ぼす影響

地方独立行政法人東京都立産業技術研究センター 研究開発本部 物理応用技術部 機械技術グループ 副主任研究員 村岡 剛

(2021 年度 奨励研究助成(若手研究者枠) AF-2021036-C2)

キーワード:バウシンガ効果,ひずみ速度,引張圧縮試験

1. 研究目的と背景

計算機の発展にともない、塑性加工においては、成形性 の評価に数値解析による成形シミュレーションが頻繁に 行われている。数値解析結果を定量的に評価するためには、 適切な解析条件の入力が必要不可欠である。解析条件の中 でも材料特性は、成形形状、応力・ひずみ分布、工具荷重 など様々な評価指標に影響を及ぼす。

材料特性において、解析精度に影響を及ぼす重要な因子 として、図1に示すバウシンガ効果とひずみ速度が挙げら れる。バウシンガ効果は素材に一方向の荷重を加え、塑性 変形させた後に、逆方向に荷重を加えた際に、初めに降伏 した時よりも降伏応力が低下する現象である¹⁾。応力-ひ ずみ関係が材料の変形状態によって変化するため、解析精 度に影響を及ぼす。また、金属材料は変形速度により変形 抵抗が変化することが知られており²⁾、成形形状にも影響 を及ぼす³⁾。そのため、材料のひずみ速度依存性も、数値 解析上では解析結果に影響を及ぼす。

バウシンガ効果やひずみ速度を考慮した数値解析の研 究はいくつか報告されている^{4,5)}。特にバウシンガ効果を 考慮したスプリングバックの予測には、移動硬化型の降伏 関数が提案され、広く利用されている⁶⁾。しかしながら、 多くの研究では、ひずみ速度の領域としては、図2⁷⁾の 10⁴~10⁻² s⁻¹の静的なひずみ速度によって得られた材料特 性を利用しており、実加工にて利用されているひずみ速度 の領域まで考慮されていない。材料特性を取得する研究に おいても、ひずみ速度を考慮してバウシンガ効果の特性を 取得した例は、引張と圧縮を別々の装置によって測定した 研究が一例⁸⁾報告されているのみである。

本研究では、ひずみ速度を考慮したバウシンガ効果の特 性取得のために、(1)万能試験機によるひずみ速度を考慮 したバウシンガ効果の特性取得、(2)高速引張圧縮試験装 置の開発を行った。(1)では、市販の万能試験機を用いて ひずみ速度毎に引張圧縮試験を行い、バウシンガ効果とひ ずみ速度の両方を考慮した材料特性の取得を試みた。(2) では、市販の万能試験機では測定困難な最大 10² s⁻¹程度 までの高速度かつ荷重反転負荷機構を兼ね備えた専用の 試験装置を開発することにより、高速度域でのバウシンガ 効果の特性取得を試みた。

図1 バウシンガ効果およびひずみ速度の影響

2. 万能試験機を用いた引張圧縮試験

2・1 引張圧縮試験および試験条件

表1に引張・圧縮試験条件を示す。本試験では、供試材 として、オーステナイト系ステンレス鋼 SUS304の板材を 用いた。引張圧縮試験には、万能試験機「AllroundLine Z100THW」(ZwickRoell 社製)を用いた。「AllroundLine Z100THW」は、試験片つかみ部が油圧式チャックになっ ており、試験中の試験片とつかみ部の滑りを防止できる。 ひずみは、レーザー変位計を用いて試験片表面のひずみを 測定した。試験では、ひずみ1%狙いで引張圧縮変形を制 御した。標点間距離は10 mm とし、最速0.5 mm/s までの 試験速度にて実施した。なお、0.5 mm/s よりも速い試験速 度も実施したが、レーザー変位計および試験装置の制御の 都合により、試験を実施することができなかった。

試験片形状、座屈抑制治具および試験機外観を図3、図 4および図5に示す。引張圧縮試験では、圧縮変形中に試 験片が座屈を生じる可能性があり、座屈により正確な応力 -ひずみ関係が測定できなくなる。座屈の防止には様々な 手法が用いられているが、本研究では、先行研究⁹⁾を参 考に試験片と治具の間に微小な隙間を設ける隙間型の治 具を用いた。試験片をはさみこむように治具を配置し、治 具間にワッシャーを入れることにより、隙間を固定した。 ワッシャーは1.9 mmの厚さを用意し、実板厚から0.02mm の治具と隙間が存在する状態とした。試験中のクロスヘッ ドの移動のために、治具により試験片が拘束されていない 箇所が存在するが、非拘束箇所では試験片の幅を大きくす ることにより、座屈を抑制した。治具には、レーザー変位 計にてひずみ測定ができるように測定用の窓を設けた。

表	1 試験条件
材料	SUS304 (JIS)
製造工程	冷間圧延 → 焼鈍 → 酸洗 → 調質圧延
板厚	2 (実厚さ 1.88)
試験装置	AllroundLine Z100 THW
標点間距離	10
試験速度 v _t / mm·s ⁻¹ (公称ひずみ速度 ċ̀ _n / s ⁻¹)	0.0015, 0.015, 0.15, 0.5 (0.00015, 0.0015, 0.015, 0.05)
目標ひずみ / %	1
荷重測定	ロードセル
ひずみ想定	レーザー変位計
座屈防止方法	隙間法
隙間 G / mm	0.02

図3 試験片形状

図5 試験機外観

2·2 試験結果

引張圧縮試験によって得られた公称応力-公称ひずみ線 図を図6に示す。試験速度が速いほど、変形抵抗が増加し ていることがわかる。反転負荷時の変形抵抗についても、 試験速度が速いほど増加している。したがって、ひずみ速 度が反転負荷時の降伏応力にも影響を及ぼすことがわか った。

引張圧縮試験では、試験中に試験速度は一定で制御され ているが、実際に試験片に生じるひずみの割合は試験中に 変化するため、ひずみ速度も試験中に変化する。そこで、 取得した応力-ひずみ関係について、代表的なひずみ速度 を求めるために、本研究では、次の通りひずみ速度を算出 した。まず、引張圧縮試験により得られた公称ひずみ・試 験時間の測定データから、相当塑性ひずみ-試験時間の関 係を求めた。次に試験開始から引張変形によりひずみ1% まで変形した際の相当塑性ひずみ-試験時間の関係の傾き から相当塑性ひずみ速度を算出した。試験速度と対応する 算出した相当塑性ひずみ速度を表2に示す。最速で0.016 s⁻¹の準静的なひずみ速度を有する応力・ひずみ関係を得る ことができた。しかしながら、0.1 s⁻¹程度までのひずみ速 度の取得は困難であった。本研究では、試験結果に影響を 及ぼさないようにレーザー変形計による非接触にてひず みの取得を行ったが、試験速度が速い場合、レーザー変位 計と試験機の制御が対応できなくなるため、試験が困難で あった。

各応力・ひずみ関係を用いて、0.2%耐力から図1に記載 した初期の降伏応力 σ_{Y1} および反転時の降伏応力 σ_{Y2} を求 めた。図7に各相当塑性ひずみ速度における降伏応力の関 係性を示す。バウシンガ効果により反転時の降伏応力の絶 対値 $|\sigma_{Y2}|$ はいずれも初期の降伏応力の絶対値 $|\sigma_{Y1}|$ より 低い。また、ひずみ速度の増加にともない、反転時の降伏 応力の絶対値 $|\sigma_{Y2}|$ は増加する。

図6 ひずみ速度を考慮した公称応力・ひずみ線図

試験速度 v _t /mm·s ⁻¹	公称ひずみ速度 <i>ἐ</i> n/s ⁻¹	相当塑性ひずみ速度 <i>έ</i> _p / s ⁻¹
0.0015	0.00015	0.00007
0.015	0.0015	0.0050
0.15	0.015	0.058
0.5	0.05	0.016

3. 高速引張圧縮試験装置の開発

3・1 高速引張圧縮試験装置および試験条件

本研究では、市販の万能試験機では再現できないひずみ 速度での試験を実施するために、特注のアクチュエータを 使用し、引張圧縮試験を実施した。試験装置構成、装置外 観、システム構成を図8、図9および図10に示す。アク チュエータには、電動油圧シリンダ e-Zero(株式会社南 武製)を用いた。制御コントローラに指令を与え、シリン ダを動作させた。ひずみは、ひずみゲージからブリッジボ ックス、シグナルコンディショナ、センサインターフェー ス(全て株式会社共和電業製)を介して電圧を変換し、シ リンダから出力された荷重、位置(速度)と共に、ロガー ソフトウェアにより取得した。電動シリンダは最速 843 mm/s まで動作させることができる。標点間距離 10 mm とすると、公称ひずみ速度の範囲ではあるが、10 s⁻¹以上 の高速の試験が実施できる。速い試験速度では、加速度の 影響により動作直後では目的の速度に達していない。そこ で、図11に示す通り助走機構を設け、電動シリンダの設 定速度通りに試験ができる状態とした。

図 9 試験機外観

単位 [mm] 5 ± 0.05 $M10 \times 1$ т 0 10 25 25 (74.8)図12 試験片形状

本試験装置を用いて、引張圧縮試験を実施した。試験片 は、オーステナイトステンレス鋼の SUS304 の棒材を用 いた。試験片形状を図12に示す。つかみ部は、試験中の 滑りを防止するためにねじ式とした。試験は試験速度 10 mm/s と 100 mm/s にて行い、電動シリンダを一定距離ま で移動させ、試験片に引張負荷を与えた後に、電動シリン ダを初期位置に戻すことにより圧縮負荷を与えた。

3·2 試験結果

試験結果を図13に示す。縦軸はシリンダ荷重、横軸は 試験時間である。試験速度が速い方が試験荷重は高く、材 料の降伏応力が高くなっていると考えられる。また、初期 降伏時の荷重である引き荷重よりも反転負荷後の押し荷 重の方が低く、バウシンガ効果の影響が表れていると考え られる。しかしながら、試験結果から応力・ひずみ関係や 降伏応力の明確な測定は困難であった。理由としては、試 験装置全体の剛性が低く、試験結果が装置全体の変形も含 んでしまっていること、試験自体の真直性が保たれておら ず、試験片に曲げ荷重が加わってしまったことなどが挙げ られる。これらを解決するために、試験機全体の補強や試 験片の曲がり、座屈防止の治具などが必要である。

図13 高速引張圧縮試験結果

4. 結言

本研究では、ひずみ速度を考慮したバウシンガ効果の特 性取得のために、万能試験機による引張圧縮試験および電 動油圧シリンダを用いた高速引張圧縮装置を開発し、試験 を試みた。結果を以下に示す。

- 座屈防止治具を用いることにより、相当塑性ひずみ速 度0.016 s-1程度までの引張圧縮試験による応力-ひずみ 関係を得ることができた。
- 反転負荷時の降伏応力は、ひずみ速度が速いほど増加 するが、線形的に増加しなかった。したがって、降伏 応力の低下度合はひずみ速度毎に変化すると考えられ る。
- 高速引張圧縮試験装置を設計製作し、実験を行った。 試験速度が速くなるほど、荷重が高くなることを確認 した。今後、装置全体の剛性向上や試験精度向上のた めの治具を製作し、高速域のバウシンガ効果の取得を 目指す。

謝 辞

本研究の実施にあたり、公益財団法人天田財団の奨励研 究助成(若手研究者枠)を賜りました。ここに深く感謝の 意を表します。また、研究の遂行にあたり、電気通信大学 の久保木教授、梶川准教授にはご助言および装置を貸与い ただきました。ここに感謝の意を表します。

参考文献

- Roostaei, A. A., Jahed, H. (2022), "Experimental observations in cyclic loading of metals", Cyclic Plasticity of Metals, pp. 3-22, https://doi.org/10.1016/B978-0-12-819293-1.00010-3.
- Paul, S. K., Raj A., Biswas, P., Manikandan, G., Verma, R. K. (2014), "Tensile flow behavior of ultra low carbon, low carbon and micro alloyed steel sheets for auto application under low to intermediate strain rate", Materials and Design, Vol. 57, pp. 211-217, http://dx.doi.org/10.1016/j.matdes.2013.12.047.
- Krinninger, M., Opritescu, D., Golle R., Volk, W. (2016), "Experimental investigation of the influence of punch velocity on the springback behavior and the flat length in free bending", Procedia CIRP, Vol. 41, pp. 1066-1071, https://doi.org/10.1016/j.procir.2015.12.137.
- Prakash, V., Kumar, R. D. (2019), "Numerical Simulation Of Warm Deep Drawing Incorporating Strain Rate Effect In Sheet Material

Properties", materialstoday: PROCEEDINGS, Vol. 18 Part 7, pp. 2595-2602, https://doi.org/10.1016/j.matpr.2019.07.118.

- Iwata, T., Iwata, N., Hotta, S., Suzuki, T., Suzuki, K., Kuriyama, Y. (2015), "Material Model Incorporating Strain Rate and Sheet Metal Forming Analysis Under Slide Motion", JSTP, Vol. 56 No. 658, pp. 993-998, https://doi.org/10.9773/sosei.56.993.
- Yoshida, F., Uemori, T. (2003), "A model of large-strain cyclic plasticity and its application to springback simulation", Int. J. Mech Sci., Vol. 45 No. 10, pp. 1687-1702, http://dx.doi.org/10.4028/www.scientific.net/KEM.233-236.4 7.
- Japan Society for Technology of Plasticity (2018), "Forging Technology -Toward Products with Net Shape and High Function-", CORONA PUBLISHING CO., LTD., Tokyo Japan, pp. 391-393.
- Watanabe, K., Yoshihara, Natori, K., Tanaka, T., Imaida, Y. (2010), "Strain rate dependence on Bauschinger effect in dual phase steel sheet", JSTP, Vol. 51 No. 594, pp. 674-679, https://doi.org/10.9773/sosei.51.674.
- Silvestre, E., Mendiguren, J., Galdos, L., Argandoña, S. E. (2015), "Comparison of the hardening behaviour of different steel families: from Mild and Stainless Steel to Advanced High Strength Steels", Int. J. Mech. Sciences, Vol. 101-102, pp. 10-20, https://doi.org/10.1016/j.ijmecsci.2015.07.013.