マグネシウム合金とアルミニウム合金との

レーザロール溶接に関する基礎的研究

三重大学 大学院工学研究科 助教 尾崎 仁志 (2021年度 一般研究開発助成 AF-2021209-B2)

キーワード:レーザロール溶接,マグネシウム合金,アルミニウム合金

1. 緒言

近年,地球環境の問題から,自動車をはじめとする輸送 機器の軽量化が求められている.そのための新たな切り札 として,マグネシウム合金の利用が期待されている.マグ ネシウムは構造用材料として使用される金属材料中,最軽 量材料であり,高比強度,高リサイクル性など優れた特性 を持つ.一方,マグネシウムは燃焼しやすいという欠点も あるが,最近では高い機械的性質を持ちながら,耐熱性や 不燃性を有している KUMADAI マグネシウム合金¹⁾が開 発され,今後,マグネシウム合金の利用が拡大することが 予想される.

実際にマグネシウム合金を輸送機器に用いる際は、マグ ネシウム合金と他の材料とを適材適所に配置した、材料ハ イブリッド構造が有効であると考えられる.なお、現在の 自動車の軽量化手段としては、コスト面や軽量化効果のバ ランスを考慮するとアルミニウム合金を利用することが 最も有効な手段²⁾とされていることから、将来的にマグネ シウム合金とアルミニウム合金との接合部が確実に増加 し、それらを高い信頼性と生産性で直接接合する技術が必 要不可欠となる.

しかし,従来の接合法でこれらを接合すると,接合部に 脆性な金属間化合物が生成することにより,継手としての 性能が悪化することから,接合が困難であることが知られ ている.そのため,マグネシウム合金とアルミニウム合金

との接合法は未だ確立されていない.また,国内外におい て抵抗スポット溶接³,摩擦攪拌接合⁴,爆発圧接⁵,レ ーザ溶接⁶により両金属の直接接合が試みられているが, 接合界面ではなく母材金属において破断するような良好 な結果が得られていない.

そこで本研究では、異種金属接合に有効であるレーザロ ール溶接法をマグネシウム合金とアルミニウム合金との 接合に適用することを試みた.本溶接法は図1に示すよう に、沓名らによって開発された、レーザとローラを組み合 わせた装置により重ね継手の線溶接を行う方法である.こ れまでの研究で、接合が困難とされていた金属の組合せを 接合可能としてきた⁷⁻¹⁰.その際、レーザロール溶接法に よる異種金属接合のメカニズムについても一部明らかに した.本溶接法では異種金属の組合せにより、現在のとこ ろ3種類の接合メカニズムが確認されている.

①両金属の融点が大きく異なり,界面層として主に金属間 化合物が生成する場合

例) アルミニウム合金と低炭素鋼⁷⁾, アルミニウム合金 と純チタン⁸⁾

②両金属の融点よりも低温で共晶反応が起こり、界面層として主に共晶が生成する場合

例)純チタンと低炭素鋼 9

③両供試材の主成分が平衡状態図において二相分離を示 し,一方の供試材の合金元素と他方の供試材との固溶体 または金属間化合物による界面層が生成する場合

例) マグネシウム合金と低炭素鋼¹⁰⁾

本研究で取扱うマグネシウム合金とアルミニウム合金 とのレーザロール溶接においては、両金属の融点の差は小 さく、両金属の融点よりも低温で共晶反応が起こりうるた め、上記②に該当する可能性がある.そこで文献を調査す ると、生成した金属間化合物に関する記述は多くあったが、 接合により共晶が生成するか否かは不明であった.よって、 マグネシウム合金とアルミニウム合金とのレーザロール 溶接の接合メカニズムは、上記①~③に該当しない、新し いタイプである可能性もあり、学術的にも興味深い.

そこで本研究ではまず,融点の差が小さい両金属の重ね 継手を作製する上で、レーザを照射する金属、すなわち図 1における Upper plate をマグネシウム合金板とアルミニ ウム合金板のどちらにすればよいかに関する知見がない ため、両方のパターンでレーザロール溶接を試みた.その 際,溶接条件を変化させてレーザロール溶接を行い,それの接合性への影響について検討した.また,作製した継手の継手性能を調査し,溶接条件と継手性能との関係を実験的に明らかにすることを目的とした.

2. 実験方法

2·1 供試材

供試材として, 板厚 1 mm のアルミニウム合金板 AZ31B および同板厚のアルミニウム合金板 A5052P を使用した. 供試材の寸法はいずれも 40×140 mm とした. AZ31B お よび A5052P の化学組成を表 1 に示す.

表1 供試材の化学組成

Materials		Elements (mass%)									
A731B	Al	Zn	M	n	S	i]	Fe	Cu	Ni	Mg
ALJID	3.01	0.98	5 0.3	3	0.	03	0.0	0022).0003	0.0001	Bal.
A 5052P	Si	Fe	Cu	N	/In	Μ	g	Cr	Zn	Ti	Al
A3032F	0.12	0.23	0.03	0.	.07	2.3	39	0.18	8 0.01	0.02	Bal.

表面前処理として,両板材の接合面を400番のエメリー 紙で研磨し,酸化膜除去を行った後,エタノールで脱脂処 理をした.レーザを照射する板表面には,レーザの吸収率 を高めるためにグラファイトスプレーを塗布した.

2・2 レーザロール溶接実験

本実験では、定格出力2kW,波長10.6μm、連続発振型 のCO₂レーザ発振器を用いた.図1に示したように、レー ザ装置に平面反射ミラーとローラ加圧装置を組み合わせ た装置を用いて実験を行った.発振されたレーザ光を、焦 点距離200mmのZnSe製集光レンズによって集光し、平 面反射ミラーにて反射させた後、角度をつけて板材へと照 射した.供試材の設置方法について、上板がマグネシウム 合金、下板がアルミニウム合金の場合と、上板がアルミニ ウム合金、下板がマグネシウム合金の場合の2通りとし、 図2に示すように設置した.

2·3 溶接条件

溶接条件を表2に示す.本研究の実験条件として、レー ザ出力を1.5 および2kW,溶接速度を10~40 mm/sの範

表2 レーザロール溶接条件

Laser type	CO ₂ laser (CW)
Laser power	1.5, 2 kW
Beam spot shape	Quasi-elliptical
Beam spot size	Minor axis : 2.5 mm Major axis : 3.5 mm
Welding speed	$10\sim40$ mm/s
Roller pressure	0.5 kN
Dlr	25 mm
Overlapped width	4 mm
Shielding gas	Ar : 20 L/min
Arrangement of specimens	Upper: Mg, lower: Al or Upper: Al, lower: Mg
D D' 1	

DLR : Distance between laser and roller

囲で変化させて実験を行った. ローラ加圧力を 0.5 kN で 一定とし、上板と下板との重ね代は 4 mm とした. また、 シールドガスに Ar を用い、流量を 20 L/min とした. 前述 のように、供試材の設置方法、すなわち上板の材質を 2 通 りで実験した.

3. 実験結果および考察

3·1 溶接可否

表3に、プロセスウィンドウを示す. (a)は上板が Mgの 場合,(b)は上板が Al の場合の溶接可否であり、〇印は継 手が得られた条件、×印は継手が得られなかった条件をそ れぞれ示している.

表3 プロセスウィンドウ

(a) Upper p	late:		W	/elding	g speed	l [mm/	s]	
Mg		10	15	20	25	30	35	40
Laser power	1.5	0	0	0	0	0	×	×
[kW]	2	0	0	0	0	0	0	×
(b) Upper p	late:		W	/elding	speed	l [mm/	[s]	
(b) Upper p Al	olate:	10	W 15	/elding 20	speed	[mm/ 30	s] 35	40
(b) Upper p Al Laser power	olate:	10 〇	W 15 〇	/elding 20	speed 25	l [mm/ 30 ×	s] 35 ×	40 ×

レーザ出力 1.5 kW では、上板が Mg の場合は溶接速度 30 mm/s まで、上板が Al の場合は溶接速度 25 mm/s まで 継手を得ることができ、継手が得られる最大の溶接速度に 差が生じた.これは、熱伝導率が Mg よりも Al の方が大 きく、レーザ照射により加熱された上板において、下板に 伝えるべき熱が溶接部から逃げやすいことが関係してい るものと考えられる.一方、レーザ出力 2 kW では上板の 材質に関わらず、溶接速度 35 mm/s まで継手を得ることが でき、レーザ出力の増加により溶接可能な最大速度も増加 した.これは、同一の溶接速度においてレーザ出力の増加 により入熱が増加したことによるものと考えられる.

3・2 継手のビード外観および断面

図3にレーザ出力2kW,溶接速度15mm/sのレーザロ ール溶接継手の表裏両面のビード外観,およびビード断面 を示す. (a)は上板が Mg の場合,(b)は上板が Al の場合を 示している.

(b) 上板がAlの場合図3 継手のビード外観および断面

上板の材質に関わらず,表ビードに関しては,レーザお よびローラが通過した痕跡として,ビードに縞模様が観察 された.この模様は,上板が Al の場合により鮮明に観察 され,裏ビードには観察されなかった.次に,ビード断面 を観察すると,レーザによる加熱とローラによる加圧によ り上板が薄くなっているのが観察できた.

3・3 接合部断面における顕微鏡組織

図4にレーザ出力2kW,溶接速度15~25 mm/sのレー ザロール溶接継手の接合部断面における顕微鏡組織を示 す.上段の写真は上板がMgの場合,下段の写真は上板が Alの場合を示しており,観察位置は接合部断面の中央と した.

図中に矢印で示すように、上板の材質に関わらず、Mg 母材側には黒色の界面組織が観察され、Al 母材側には白 色の界面組織が観察された.また、各界面組織の領域の大 きさから、上板が Al の場合の方が界面組織の生成量が全 体的に少ないことが分かった.これは前述のように、熱伝 導率が Mg よりも Al の方が大きいことが関係しているも のと考えられる.また、上板の材質に関わらず、溶接速度 の増加により各界面組織の領域の大きさは減少した.これ は、溶接速度の増加により入熱が減少したためであると考 えられる.

3·4 EPMA 分析結果

前節において観察された界面組織の組成を調査するために, EPMA 分析を実施した.例として,上板が Al の場合,レーザ出力 2 kW,溶接速度 15 mm/s の条件での分析結果を図 5 に示す.

No.	Mg(at%)	Al(at%)		
1	31.5	68.5		
2	67.3	32.7		

(c) EPMAによる定量分析結果

図5 接合界面のSEM像およびEPMA分析結果

図中(a)に示す SEM 像の赤色の四角で囲まれた領域に対 し, EPMA 面分析を実施した結果を(b)に示す. その結果, Al 母材側には Mg が, Mg 母材側には Al がそれぞれ検出 された. このことから, 接合界面において両金属の相互拡 散が起こったものと推察される.

さらに, (a)の SEM 像の四角内に赤色の点で示した 2 箇 所の定量分析結果を(c)に示す. これらの結果と Al-Mg 系 平衡状態図¹¹⁾から, Al 母材側の界面組織は主に Al₃Mg₂, Mg 母材側の界面組織は主に Al₁₂Mg₁₇ であると推定され た.よって,図4における Al 母材側の白色の界面組織は 主に Al リッチな金属間化合物,Mg 母材側の黒色の界面 組織は主に Mg リッチな金属間化合物により構成されて いると考えられる.

3・5 継手の引張せん断強さ

接合部の強度を評価するために引張せん断試験を実施 した. 試験片の形状は幅 10 mm の矩形とした. 図6に溶 接長 1 mm あたりの引張せん断強さを示す. (a)は上板が Mg の場合, (b)は上板が Al の場合であり, レーザ出力が 2 kW の場合を丸印, 1.5 kW の場合を三角印でそれぞれ示 している.

上板が Al の場合は同一の実験条件における実験結果の

差が小さく,溶接速度が増加するほど引張せん断強さの平 均値が増加する傾向が見られた.一方,上板が Mg の場合 は同一の実験条件における実験結果の差が大きく,引張せ ん断強さの平均値は増減を示した.この実験における最大 継手強度は 89.5 N/mm であった.

図 7 (a) 金属間化合物の断面積および接合幅 (b) 金属間化合物の厚さと継手強度との関係

ここで,継手強度に影響を与える要因について調査する ために,接合部断面に生成した金属間化合物に着目した. 図7(a)に示すように,赤色で示される金属間化合物の断 面積*A*を測定し,接合幅*W*で除することにより金属間化 合物の平均厚さを求めた.

図7(b)に金属間化合物の平均厚さと引張せん断強さと の関係を示す.上板が Mg の場合を青色,上板が Al の場 合を赤色で示している.上板が Al の場合,上板が Mg の 場合よりも相関係数が高くなっており,Al が上板の場合 では金属間化合物の平均厚さが薄いほど継手強度が増加 することが分かった.一方,上板が Mg の場合,上板が Al の場合よりも相関係数が低くなっている.

そこで次に,金属間化合物の平均厚さではなく接合面積 に着目した.図8(a)は引張せん断試験後の接合部の破断 面を示しており,図中に赤線で囲まれた領域を接合面積と して測定した.

図 8 (b)に接合面積と引張せん断強さとの関係を示す. 赤色で示される上板が Al の場合は,上板が Mg の場合よ りも相関係数が低くなっている.一方,青色で示される上 板が Mg の場合は,上板が Al の場合よりも相関係数が高 くなっている.したがって,上板が Mg の場合では接合面 積が増加するほど継手強度も増加することが分かった.

以上の結果より,継手強度に影響を与える要因は,上板が Al の場合は金属間化合物の平均厚さ,上板が Mg の場合は接合面積であることが示唆された.

4. 結言

マグネシウム合金とアルミニウム合金とのレーザロー ル溶接に関する基礎的研究を行った結果,以下の結論を得た.

- レーザ出力 1.5 kW では、上板が Al の場合よりも Mg の場合の方が高速で溶接することができた.また、上 板の材質に関わらず、レーザ出力が増加すると溶接可 能な最大速度が増加した.
- 上板の材質に関わらず, Mg 母材側には黒色の界面組織, Al 母材側には白色の界面組織が観察された.また,

各界面組織の量は、上板が Mg の場合よりも Al の場合 の方が全体的に少なかった.

- 上板の材質に関わらず,接合界面には Mg 母材側に Al₁₂Mg₁₇, Al 母材側に Al₃Mg₂ と推定される金属間化合 物が観察された.
- 4) 上板が Al の場合,金属間化合物の量が減少するにつれて、継手の引張せん断強さが増加する傾向があった。
 一方、上板が Mg の場合、接合面積が増加するにつれて接合部の引張せん断強さが増加する傾向が見られた。
- 5) 本研究における最大継手強度は 89.5 N/mm であった.

謝 辞

本研究は、公益財団法人天田財団 2021 年度 レーザプ ロセッシング 一般研究開発助成 AF-2021209-B2 の助成 を受けたものです. ここに深く感謝いたします.

参考文献

1) 河村能人:日本機械学会誌, 116-1138 (2013),48

- 池田昌則, 櫻井健夫:自動車のマルチマテリアル戦略, NTS (2017), 51-59
- 3) 渡辺健彦, 杉山善崇: 軽金属, 54-7 (2004), 293-297
- 渥美健太郎,藤井英俊,森貞好昭,石川武,河田直樹: 溶接学会論文集,36-1 (2018),9-15
- Bert Liu, Anupam Vivek, Glenn S. Daehn: Journal of Manufacturing Processes, 30 (2017), 75-82
- L.H. Shah, F. Khodabakhshi, A. Gerlich: Journal of Manufacturing Processes, 37 (2019), 212-219
- 7) 尾崎仁志, 沓名宗春: 溶接学会論文集, 25-4 (2007), 473-479
- 8) 尾崎仁志,林慎吾,沓名宗春:溶接学会論文集,26-1 (2008),24-30
- 9) 尾崎仁志,市岡礼慈,沓名宗春:溶接学会論文集,25-1 (2007),173-178
- 10)尾崎仁志,海道和貴,齋藤健伍,川上博士,鈴木実平, 沓名宗春:溶接学会論文集,35-2,(2017),85-92
- T. B. Massalski: Binary Alloy Phase Daigrams Volume 1, American Society for Metals, (1986), 170