軟X線波長による低エネルギー微細レーザープロセッシング

機構の探究

近畿大学 生物理工学部 医用工学科 講師 三上 勝大 (2021年度 奨励研究助成(若手研究者枠)AF-2021230-C2)

キーワード: 軟X線レーザ, 微細加工, 誘電体

1. 研究の目的と背景

一般的に石英ガラスやサファイアといった透明誘電体 材料は難加工材料として認識され、高効率かつ高品質なレ ーザプロセッシング技術について研究開発が進められて いる。この、難加工の主要因は数 eV 以上となる幅広いバ ンドギャップによるものであり、レーザ光の吸収率の低さ を招いている。

透明体誘電体材料の高品質レーザ加工へのアプローチ は、加工レーザの短パルス化や、短波長化が挙げられる。 両アプローチ共に、幅広いバンドギャップによる低い光吸 収率を改善することにつながっている。短パルス化は非線 形光学現象である多光子吸収を促進させ、短波長化は高フ オトンエネルギーにより含有している微少な不純物や構 造欠陥に起因する中間準位の光電離を促進させる。

近年、このフェムト秒パルスによる非熱的な加工と、軟 X線の短波長を組み合わせた加工技術の研究が行われて いる。Dinhらは、これまでSi 材料の加工にフォーカスし、 92 eV と 120 eV の減衰長の違いが加工結果に影響をおよ ぼすことを明らかにし、120 eV の軟 X 線レーザ光により 微細な加工が達成できることを報告している¹⁾。ここで減 衰長は短いほどエネルギーが表層に蓄積し、微細な加工が 実現すると説明され、電子及び熱の拡散について考慮すべ きと言及されている。一方、シリコンの酸化物である二酸 化ケイ素について、我々はレーザ加工縁に顕著なリム構造 を有しない加工痕を報告し、その低いレーザ加工閾値をエ ネルギー準位に基づき説明している²⁾。また、渋谷らは透 明誘電体材料である石英ガラスの熱影響が極めて少ない Deep-drilling が達成されることを報告している³⁾。これ らのシリコンおよびその酸化物である石英ガラス材料は 特にエレクトロニクスにおいて重要な材料であり、それら の微細加工は例えば半導体製造プロセスにおいてキープ ロセスとなる。エレクトロニクスにおいて、高い誘電率お よび熱伝導率を有するサファイアもまた重要な材料とし て挙げられる。しかし、サファイアに対する軟 X 線加工に ついては十分に究明されていない。

本研究では、酸化物結晶であるサファイア結晶に対して、 軟 X 線波長の自由電子フェムト秒レーザを用いた加工を 行った。その中で、その加工特性を明らかにするとともに、 世界に先駆けてサファイア結晶のサブナノ級の微細加工 パターニングを達成したのであわせて報告する。

2. 実験方法

2·1 実験装置

フェムト秒軟 X 線自由電子レーザ (Soft X-ray Free Electron Laser、以下、SXFEL) 照射実験は、Spring-8 Angstrom Compact FEL (SACLA) 施設の BL1 の軟 X 線ビー ムラインで行った。SXFEL パルスは、120 eV (波長 10.3 nm) の光子エネルギーと約 30 fs であった⁴⁾。SXFEL は、 Kirkpatrick-Baez ミラー集光システムと楕円ミラーから なる二段階集光システムを用いて試料表面に集光した 5)。 半値全幅で定義された焦点スポットサイズは、ナイフエッ ジスキャン法によって、水平 0.5 µm、垂直 0.5 µm、焦 点面積 0.25 µm² と評価してフルエンスの算出に用いた。 試料表面への照射エネルギーは、ガス強度モニターで測定 された値から推定し、試料表面への照射フルエンスの制御 に厚さの異なるジルコニウム (Zr) およびシリコン (Si) フィルタを使用した。このフィルタの透過率校正は、事前 に高エネルギー加速器研究機構(KEK)フォトンファクト リー (PF) で実施した。

2·2 実験試料

本研究では、試料として金属アルミニウムとアルミの酸 化物であるサファイア結晶を用いた。アルミニウムは、サ ファイア結晶基板上に蒸着した薄膜である。サファイア結 晶は、C面でカットされ、表面粗さ RMS は 0.15 nm で、サ イズは 10x10 mm で厚さは 0.5 mm である。

2·3 評価内容

レーザ加工の特性を知る上で、レーザ照射深さの照射フ ルエンス依存性を評価し、2 温度モデルによる解析で得ら れる⁶⁾。実行吸収長はあらゆるレーザーアブレーション加 工において極めて重要であり、学理を追究するモデルにお いて、一つの指標になりえる。サファイアにシングルショ ットもしくは 10 ショットを照射し、原子間力顕微鏡 (Atomic Force Microscope、以下、AFM) 観察により加工 深さの評価を行った。入射フルエンスは、マルチショット で計測された場合は、ショット回数で除することで1パル スあたりに換算した。また、ここでフィッティングは $L = \alpha_{eff}^{-1} \ln(F/F_{th})$ により実施した。ここで L は加工 深さ、 α^{-1}_{eff} は実効吸収長、F は入射フルエンス、F_{th}は加 工閾値フルエンスである。加工閾値付近で得られるフィッ ティングと縦軸で示す加工深さが 0 となる点を加工閾値 と定義した。加えて、サファイアの特性を活かした加工を 実証すべく、集光光学系の収差を利用したパターン描画を 試みた。軟 X線レーザーパルスをデフォーカスし、自動ス テージを等速移動させながら照射することで、照射プロフ ァイル内のレーザ強度分布の勾配をなだらかにしたパタ ーニングを試みた。

3. 実験結果

図1にサファイア結晶に対するアブレーション(加工) 深さの照射フルエンス依存性を示す⁷⁾。フィッティング結 果から導出された加工閾値は、162 mJ/cm²であった。実効 侵入長 α⁻¹ eff の 導出結果として、 120 eV の SXFEL に対する 侵入長の文献値は、サファイアで 30.2 nm である⁸⁾。サフ ァイアでは、アブレーション閾値付近の低照射フルエンス 領域と 5,000 mJ/cm²を超える高照射フルエンス領域で 2 本の直線に分けることができ、それぞれの実効侵入長はα $^{-1}_{\text{eff}}$ = 9.62 nm (<5,000 mJ/cm²) $\geq \alpha^{-1}_{\text{eff}}$ = 33.0 nm (> 5,000 mJ/cm²) であった。アブレーション閾値付近におい ては、文献値より約1/3短い値である。この結果は、サフ ァイアでは、アブレーション閾値付近のフルエンスを活用 することで、侵入長よりも浅い表面加工が可能であること を示している。10 ショットすべての1パルスあたりの平 均加工深さは、低フルエンス領域での単一ショットの深さ とほぼ重なり、低フルエンス領域のフィッティングに近か いものであった。10 ショットにおける実効吸収長と加工 閾値は、それぞれ 9.8 nm と 308 mJ/cm²であった。フェム ト秒レーザーアブレーションの研究では、複数のレーザー パルス照射によって加工閾値の低下⁹⁾や加工表面形状の 影響¹⁰⁾が報告されている。この点については、今後、よ り詳細に検討する必要がある。

図2にサファイア表面のレーザ加工痕の AFM 観察結果 を示す⁷⁰。図2(a)の AFM 観察像に示すようにレーザ照射 径より広範囲な熱変性領域は観察されず、図2(b)の断面

図1 サファイア結晶の SXFEL による加工深さのフルエ ンス依存性 (●・■:1shot 計測、〇:10shot 計測)⁷⁾

プロファイルに示すように、加工閾値が230倍の十分に高 いフルエンスであってもリムなどの熱影響が少ない形状 が得られている。この熱的影響のない加工は、先行研究で 報告されているSiO2の加工特性と同じであった^{2,3)}。この 結果は、サファイアにおいても熱的影響のない表面加工の 実現を期待させるものである。

このように示されたサファイア結晶の表面加工特性に ついて、我々は、微細な加工可能性を実証すべく、ナノサ イズ集光光学系の収差を利用したパターン描画を試みた。 図3に結果を示す⁷⁾。軟X線レーザーパルスをデフォーカ スすることで図3(a)に示す線状のパターン形成に成功し た。図3(b)に図3(a)内の点線で示す箇所の断面深さプロ ファイルを示す。加工痕の深さは僅か0.5 nm 程度であっ た。サファイアの格子定数が a = 0.477 nm (4.77 Å) c= 1.304 nm (13.04 Å) であることから、わずか数原子のパ ターニングである。この数原子層分の加工は、通常アブレ ーションとは異なっており、表面の皮をむくような

図2 レーザ加工痕 (37, 200 mJ/cm² 照射) (a) AFM 観察像 (b) 断面プロファイル⁷⁾

図3 レーザ加工痕 (37, 200 mJ/cm² 照射) (a) AFM 観察像 (b) 断面プロファイル⁷⁾

Peeling と言うべき現象である。この時の照射フルエンス は縦長にフォーカスしたスポット径を正確に測定するこ とは難しいが、約 170 mJ/cm²であり、アブレーション閾 値程度であると推定している。我々は SXFEL による利点を 活かすことで、低フルエンスによる極めて高精細な線画の 形成に成功した。

4. 考察

アブレーション閾値や実効侵入長の導出結果、特にサフ ァイア結晶で示されたアブレーション加工閾値付近での 実効侵入長よりも浅い加工の可能性については、軟X線レ ーザのアブレーションの応用となるレーザ加工の特性を 知る上で特に重要で有用な情報である。アブレーション閾 値近傍の低照射フルエンスでは、内部応力の増加が駆動力 となって表面層が喪失するスパレーションの発生が予想 されている¹¹⁾。スパレーションによる表面層除去は、軟X 線の侵入長程度の深さまで影響されることが示されてい る¹²⁾。そのため、今回得られた、数原子層分の深さもつ 極めて浅い加工構造は、スパレーションとは異なるプロセ スを検討する必要がある。

サファイアは初期状態では自由電子を持たないことか ら、金属アルミのような初期から自由電子をもつ材料とは 異なる加工プロセスを検討する必要がある。サファイアの エネルギー準位の理論計算から報告されている内殻励起 の吸収ラインは最低 79.3 eV であり、A1 2p 軌道に由来す るものである¹³⁾。金属アルミで自由電子の逆制動放射に 必要となる 11.6 eV と比較すると、光電離に必要なフォト ンエネルギーは約7倍も多く、約0.1 J/cm² の低加工閾値 を説明するには不十分である。レーザ照射材料のイオン化 は内殻準位からの伝導帯に電子遷移する光電離だけでな く、結合エネルギーに相当するエネルギーを投入すること で、直接的に化学結合を切断することも想定することが必 要となる。結合エネルギーを推定するために、標準状態を 仮定すると、標準生成エンタルピーを用いて次の通りに示 すことができる。

Al₂O₃ (-1,676 kJ/mol) → 2Al (0 kJ/mol) + 30 (249.2 kJ/mol×3)

従って、サファイアの結合エネルギーは2423.6 kJ/mol と求められ、アボガドロ数により25.1 eV と換算すること ができる。この値は、金属アルミの逆制動放射に必要な 11.6 eV の約2.2 倍であり、光電離より生じやすいことが 推測される。一方で、我々が報告している誘電体材料であ る SiO₂では Peeling 加工は認められていない⁷⁾ ことから、 誘電体材料の全てで Peeling 加工が達成されるわけでは ない。SiO₂において、サファイアと同様に結合エネルギー を推定すると、標準生成エンタルピーにより次の通りに示 すことができる。

SiO₂ (-911 kJ/mol) → Si (0 kJ/mol) + 20 (249.2 kJ/mol×2)

従って、シリコンの結合エネルギーは 1160.2 kJ/mol と求められ、標準状態を仮定するとアボガドロ数より 12.0 eV と換算される。SiO₂の内殻軌道における光電離に 必要なエネルギーは 13.6 eV¹⁴⁾であり、結合エネルギーと 同等である。そのため、化学結合切断だけではなく、光電 離も同時に生じてしまい、最表層の化学結合切断のみによ り生じる Peeling 加工が顕在化しにくい状況であると推 測される。

Peeling 加工を実現する材料の条件として、内殻軌道の 光電離エネルギーと比較して十分に結合エネルギーが弱 いことが考えられる。この仮定を検証していくことで、今 後、他の材料においてもサファイアと同様に Peeling 加工 の実現性を議論する鍵になると考えられる。

5. まとめ

本研究では、サファイア結晶を用いて、SXFELを用いた 軟X線レーザ加工の特性を明らかにし、サファイアにおい て表層原子数層の剥離を実現するPeelingを実証した。こ のPeeling加工について、化学結合エネルギーに基づく表 層分子の化学結合切断モデルにより考察を行った。化学結 合エネルギーを考慮することで、Peeling現象が生じる、 または生じない誘電体材料を区別できる可能性を示した。 今後、この現象を追究するために、他の材料における化学 結合に対してPeeling加工の実現有無を追加検証してい く必要がある。

本研究成果は、所望のサブナノ構造形成による描画手法 を確立させる Peeling 加工のマイルストーンとなり得る。

謝 辞

本研究は、(国研)量子科学技術研究開発機構 石野雅 彦 プロジェクトリーダー、錦野将元 上席研究員、ヂン タ ンフン主任研究員の多大な協力のもと実施されました。

本研究は、公益財団法人 天田財団の奨励研究助成(若 手研究者枠)AF-2021230-C2の支援により実施した研究で あり、同財団に心より感謝を申し上げます。

参考文献

- T.-H. Dinh, N. Medvedev, M. Ishino, T. Kitamura, N. Hasegawa, T. Otobe, T. Higashiguchi, K. Sakaue, M. Washio, T. Hatano, A. Kon, Y. Kubota, Y. Inubushi, S. Owada, T. Shibuya, B. Ziaja and M. Nishikino, Commun. Phys. 2 150 (2019).
- K. Mikami, M. Ishino, T.-H. Dinh, S. Motokoshi, N. Hasegawa, A. Kon, Y. Inubushi, S. Owada, H. Kinoshita, M. Nishikino, Opt. Lett. 45 2435-2438 (2020).
- T. Shibuya, T. Takahashi, K. Sakaue, T.-H. Dinh, H. Hara, T. Higashiguchi, M. Ishino, Y. Koshiba, M. Nishikino, H. Ogawa, M. Tanaka, M. Washio, Y. Kobayashi, and R. Kuroda, Appl. Phys. Lett., 113 171902 (2018).

- S. Owada, M. Fushitani, A. Matsuda, H. Fujise, Y. Sasaki, Y. Hikosaka, A. Hishikawa, and M. Yabashi, Journal of Synchrotron Radiation 27, 1362-1365 (2020).
- H. Motoyama, S. Owada, G. Yamaguchi, T. Kume, S. Egawa, K. Tono, Y. Inubushi, T. Koyama, M. Yabashi,
 H. Ohashi, and H. Miura, J. Synchrotron Rad. 26 1406-1411 (2019).
- S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, J. Opt. Soc. Am. B 14 2716-2722 (1997).
- 7) K. Mikami, M. Ishino, H. Motoyama, T.-H Dinh, S. Yokomae, G. Yamaguchi, S. Egawa, K. Sakaue, H. Mimura, T. Higashiguchi, Y. Kubota, S. Owada, A. Iwasaki, Y. Inubushi, and M. Nishikino, Opt. Lett., 48 5041-5044 (2023).
- B. L. Henke, E. M. Gullikson, and J. C. Davis, Atomic Data and Nuclear Data Tables 54, 181-342 (1993).
- Y. Jee, M. F. Becker, and R. M. Walser, J. Opt. Soc. Am. B 5, 648 (1988).
- 10) S. Tani, Y. Kobayashi, Sci. Rep. 12, 5837 (2022).
- 11) D. Perez and L. J. Lewis, Phys. Rev. B 67, 184102 (2003).
- 12) N. A. Inogamov, V. V. Zhakhovsky, A. Y. Faenov, V. A. Khokhlov, V. V. Shepelev, I. Y. Skobelev, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, T. Kawachi, Y. V. Petrov, S. I. Anisimov, V. E. Fortov, Appl. Phys. A 101 87-96 (2010).
- T. V. Perevalov, V. A. Gritsenko, and V. V. Kaichev, European Physical Journal Applied Physics 52, 30501 (2010).
- 14) J. A. Tossell, D. J. Vanghan, and k. H. Johnson. Chem. Phys. Lett. 20, 329 (1973).