レーザー誘起水熱合成を利用して金と二酸化バナジウムの ハイブリッドナノ構造を作製

北海道大学 電子科学研究所 助教 Pin Christophe Louis Marie (2021年度 奨励研究助成(若手研究者枠) AF-2021238-C2)

キーワード:レーザー誘起水熱合成,プラズモン,二酸化バナジウム

1. 研究の目的と背景

プラズモンナノアンテナとは、特定の放射角度、偏光状 態,軌道角運動量などの特性を調整した光を放射できる金 属ナノ構造体である¹⁾. これらのナノデバイスは、単一の ナノエミッタから放射される光を、自由空間に向けて、あ るいはフォトニックチップ内の特定のガイドモードに向 けて制御するために使用することができる. プラズモンナ ノアンテナは、2D フェーズドアレイのように機能する 2D アレイを形成するためのビルディングブロックとしても 使用できる. このような光ナノアンテナの集合体はメタサ ーフェスと呼ばれる²⁾.

近年,メタサーフェスと呼ばれるフラットな光学部品の 開発が光科学や産業界で注目されている^{2,3)}.これまでに, フラットレンズ,フラット偏光板,フラット軌道運動量変 換器など,多くの機能の実現に成功している.しかし,そ れらのデバイスの機能は,通常,製造プロセス中にその形 状によって固定されている.扁平な光学部品はすでに製造 されており,次世代のオプトエレクトロニクスデバイス (スマートフォンのカメラなど)に組み込まれようとして いるが,制御可能な機能を持つ部品の開発が急務となって いる³⁾.

その方法の一つは、相変化材料を使用することである³⁾. 相変化材料とは、温度や電圧などの変化に応じて構造や性 質が大きく変化する材料のことである.中でも二酸化バナ ジウム(VO₂)は、室温に近い温度(約68℃)で絶縁体か ら金属へと高速に相転移することから、注目されている材 料のことである⁴⁾. VO₂にタングステン(W)をドープする と、さらに室温に近い温度(約30~40℃)で緩やかな相 転移を起こすことができる⁵⁾.トップダウン製造技術によ って VO₂薄膜上に作製された単純な形状のプラズモンナノ 構造の報告例はあるが⁶⁻⁸⁾、複雑な形状を持つ金属と VO₂ のハイブリッドナノ構造の作製は困難である.

水熱合成は、水溶液中で起こる化学反応に基づくワンス テップで環境に優しい製造方法である(有機溶媒を必要と しない).前駆体溶液が所定の温度閾値以上に加熱される と、材料合成の反応が可能になったり、促進されたりする. これまでに様々な材料がバルク溶液中で合成されている が、近年、レーザー誘起水熱合成法による酸化亜鉛(ZnO) ナノワイヤの合成が実証されている^{9,10)}.また、私の最近 の研究では、北海道大学・電子科学研究所の笹木教授と北 海学園大学の藤原教授との共同研究により,金ナノ構造上 に選択的に Zn0 シェル層をレーザー誘起成長させること に成功している^{11,12)}.この独自の材料成長技術は,局所表 面プラズモン共鳴効果を利用して,レーザー照射時に発生 する熱を局所的に制御することで,ハイブリッドナノ構造 作製を実現している. VO₂ は一般的な水熱反応で合成でき るが^{13,14)},このレーザー誘起水熱合成による VO₂の局所合 成は未だ実証されていない.

図1 金薄膜上における VO2 のレーザー誘起水熱合 成. プラズモン支援水熱合成を使用して選択的に VO₂ ナノシェルを作製する.

本研究では、V02 を相変化材料として用い、高度に調整 可能なマイクロ・ナノ光学デバイスの実現のために、レー ザー誘起水熱合成による簡便な方法で金とV02のハイブリ ッドナノ構造の作製を試みた.本研究では、レーザー誘起 水熱合成法を用い、金ナノ構造の周りに選択的にナノサイ ズの V02 構造を作製する(図1).レーザー照射により誘 起されたプラズモン場による局所加熱を利用することで、 局所的に VO₂ナノシェルを意図的に作製できると期待され る.また、アルミナコート金薄膜に単純にレーザーを照射 し、局所加熱を行うことによって、局所的に水熱合成を行 い、VO₂の円形状のマイクロ構造を局所的に作製した結果 についても報告する.

2. 実験方法

2・1 前駆体溶液の調製

本研究で使用した前駆体溶液は、コロイド状 VO₂ナノワ イヤの水熱合成について既に報告されているレシピに従 って調製した.五酸化バナジウム(V₂O₅)とシュウ酸二水和 物(H₂C₂O₄・2H₂O)を1:2のモル比で硫酸水溶液(濃度 0.05mo1/L)に混合して前駆体溶液を調製した.アルミホイ ルで包んだ密閉ガラス瓶に入れ、室温で数日間保存すると、 VO²⁺イオンの生成により、オレンジ色の溶液が緑色、濃紺 色へと徐々に変化した.この結果で、バナジウムイオンの 酸化状態が V から IV に変化したことを確認できた.

2・2 金薄膜を用いたレーザー誘起水熱合成

厚さ3 nm のクロム接着層をコーティングした清浄なガ ラス基板上に、ヘリコンスパッタリング法で厚さ 30 nm の金薄膜を蒸着した.金上での VO_2 成長を可能にするため には、さらに接着層が必要であることが判明した後、原子 層堆積法によって厚さ3 nm のアルミナ薄膜を堆積した. 前駆体溶液 (5~10 µL)を基板上に滴下し、カバーガラス

(#1, 24×24 mm²) で覆った. 顕微鏡のステージに置く前 に, 粘着テープでサンプルを密閉した. レーザー誘起水熱 合成実験を行うために, 波長 1064 nm の CW レーザー光源 からのガウスビームを, 40 倍の対物レンズ (NA 0.6) ま たは 100 倍の油浸対物レンズを用いて金薄膜の表面に集 光した. 100 倍対物レンズの可変開口数は, 暗視野顕微鏡 イメージングを可能にするために 0.80 に設定した. 円形 状の VO₂マイクロ構造を作製するために, 15 mW から 21 mW のレーザー出力を使用した. 照射時間に関しては, 18 mW のレーザー出力を使用した場合は 3 秒, 15 mW のレーザー 出力を使用した場合は 12 秒から 14 秒とした. 照射時間が 長いとマイクロバブルが発生した. レーザー出力 21 mW の場合は, マイクロバブル形成までの時間が短く, マイク ロバブル形成前に照射を止めることができなかった.

2・3 金ナノ構造を用いたプラズモン支援水熱合成

電子ビームリソグラフィ(125 kV, 30 pA)により,ガ ラス基板上に金ナノディスクおよびナノバー構造を作製 した.現像後,ヘリコンスパッタリング法により厚さ3 nm のクロム接着層と厚さ30 nm の金薄膜を蒸着した.リフト オフ後,原子層堆積法により厚さ3 nm のアルミナ薄膜層 を堆積した.サンプルは上記と同じプロセスに従って作製 した.水熱合成実験を行うために,100 倍の油浸対物レン ズ(NA 0.8)を用いて,波長1064 nm の CW レーザー光源 からのガウスビームを集光した.金ナノ構造上に VO₂ナノ シェルを作製するために、3.7 mW から 5.3 mW のレーザー 出力を使用した.構造によって、照射時間は1秒から数十 秒と変化させた.

COMSOL Multiphysics での数値モデルを用いてシミュレ ーションを行い、プラズモンナノ構造体の分光特性と光熱 効果による定常状態の温度上昇を見積もった.

3. 実験結果

3・1 金薄膜上の円形状の VO2 マイクロ構造作製

V02の水熱合成は、40倍の対物レンズを使用してアルミ ナ薄膜層の無い金薄膜にレーザー光を集光することで試 みた.光を薄膜に強く集光すると、V02粒子が合成された. しかし、それらは金表面に付着することなく、溶液中に急 速に分散した.レーザーの出力が大きいと、マイクロバブ ルが形成され、融解とディウェッティングによって金薄膜 に永久的な損傷が生じた.

次に顕微鏡対物レンズの後方焦点面にレーザービーム を集光することで,直径約20µmの光ビームを金表面に照 射した.ナノ結晶の核生成はビームスポットの全域にわた って金と溶液の界面で観察された.この場合も,金表面に 成長した粒子の一部は,レーザースポットから溶液中に速 やかに分散することが観察された.金薄膜の同じ領域に数 秒間レーザーを照射すると,マイクロバブルが生じた.SEM 画像から,金表面にナノワイヤ状の結晶が形成されている ことがわかった.しかし,広い領域でナノ結晶が確認でき ないこともあった.おそらく,合成した粒子が臨界サイズ に達した後に剥離したことが原因であると考えられる.

図 2 15 mW のレーザー出力で合成された直径 1 μm の円形状のマイクロ構造. 白線:500 nm.

金表面への VO₂の付着を可能にするため,金薄膜上に薄 いアルミナ付着層を堆積した.繰り返し実験を行ったとこ ろ,試料表面に VO₂粒子が成長することを確認した.100 倍の対物レンズを使用してレーザー光を集光し,直径 1 µm の円形状のマイクロ構造を作製した.異なる成長段階にお けるマイクロ構造の SEM 画像を図 2 に示す.構造の垂直成 長が起こる前に,まず界面に薄い準 2 次元層が形成される. 作製された構造は,粗い球状の表面を持つ.

VO₂の光吸収の影響が大きいため、最初の薄膜層の核生 成後、成長速度は急速に上昇する.VO₂合成による吸収の 増加のため、レーザースポットにおける固液界面の温度は 加速度的に上昇すると予想される.VO₂のレーザー誘起水 熱合成は、このように自己触媒的なプロセスである.連続 的なレーザー照射では、最初のナノ結晶の核生成からわず か数秒後にマイクロバブルが形成された.しかしこの場合、 基板には損傷は観察されなかった.おそらくアルミナで保 護されているためであろう.図3のSEM 画像からはむしろ、 合成されたVO2マイクロ構造の結晶化が改善されている様 子が示されている.この結果は、空気リッチなマイクロバ ブルの熱伝導率が、周囲の溶液の熱伝導率に比べて低いこ とで説明できる.同程度のレーザー出力を用いると、マイ クロバブルの形成により、前駆体溶液が突然存在しなくな るため、材料成長が停止する一方で、より高い温度に到達 することが可能になる.

図3 (a)15 mW, (b)18 mW, (c)21 mW のレーザー出力 を用いて、マイクロバブル形成後に得られた直径 1 µm の円形状のマイクロ構造. 白線:500 nm.

図4 マイクロバブル形成後に得られたマイクロ構 造の SEM 画像と EDS 測定結果(バナジウムと酸素). マイクロバブルの接触線(破線)付近にも VO₂ナノ結 晶が見られる. 白線:1 μm.

図4は、マイクロバブル形成後の合成マイクロ構造について行った EDS 測定である.結果からわかるように、バナジウムリッチな物質がレーザースポットだけでなく、マイクロバブル周辺の三相接触線付近(図中波線付近)にも形

成された.この結果は、金薄膜の大きな温度上昇と、マイ クロバブル周囲の熱勾配誘起マランゴニ流による前駆体 濃度の上昇の両方によって説明できると考えられる.

3・2 金ナノ構造上の VO2ナノシェル作製

局所的で光学的に制御可能な熱源としてプラズモンナ ノ構造を用いて、VO₂の水熱合成を試みた.まず金ナノデ ィスク構造を用いて局所的な表面プラズモン共鳴の励起 による光熱エネルギー変換の増強効果を検証した.図5に 示すように,直径205 nmから230 nmのナノディスクでは, VO₂の成長が速かった.これは,双極子プラズモン共鳴の 励起により,ナノディスクの吸収断面積が増加したためで ある.

図5 直径の異なる金ナノディスク(左から 175 nm、 205 nm、230 nm、260 nm)上に、3.7mW のレーザービ ームを1 秒間集光して合成した VO₂ナノシェル. 白線:300 nm.

次に、入射レーザーの偏光状態によって制御される VO₂ 合成について検証した.まず、直線偏光レーザー光を金ナ ノバーダイマー構造に照射した.2つのナノバーは、直交 する直線偏光状態を用いて双極子プラズモン共鳴を選択 的に励起できるように、互いに垂直になるように配置した (図6).結果に示すように、VO₂は入射光の直線偏光と同 じ方向に配向したナノバー上でのみ選択的に合成された.

図 6 入射光の直線偏光と同じ方位を持つナノバー 上に選択的に合成された VO₂ナノシェルの成長前後の 金ダイマーナノ構造. 白線:100 nm.

局所的な表面プラズモン共鳴の励起が,どのように局所 的な熱分布,ひいては局所的な物質水熱合成を制御できる かをさらに実証するために,同じ方向に配向した3つのナ ノバーからなる金ナノ構造体(図8)に円偏光を照射した. スピン軌道相互作用効果により,入射光の円偏光は,ナノ バーの局所的な表面プラズモン共鳴間の非対称結合を引 き起こす.この非対称結合は,入射光とナノ構造の結合プ ラズモンモードの両方のスペクトル特性にも依存する. 我々の実験では、入射光の波長は固定(1064 nm)であっ たが、ナノバーの長さを変えることによって、ナノ構造の スペクトル特性を調整することができる.

図 7 5.3 mWの左円偏光集光ガウスビームを照射した
3 つの金ナノバー構造の各ナノバー中心部(黒 o: 上
部ナノバー,赤+:左側ナノバー,青×:右側ナノバ
一)の温度を数値的に推定した.

図8 5.3 mWの左円偏光集光ガウスビームを照射した 3 つの金ナノバー構造の温度分布.ナノバー構造の長 さ:(a)185 nm,(b)210 nm.

集光したガウスビーム (NA 0.8) をナノ構造体に照射す るときの各ナノバー中心部の温度上昇を数値的に見積も った. 照射レーザーパワーは 5.3 mW とした. 図7に示す ように、上部のナノバーと下部のナノバーの間だけでなく、 下部の左側と右側のナノバーの間でも大きな温度差が予 想される (170 nm から 205 nm の区間で 20℃以上).特に, ナノバーの長さが 195 nm 以上と 190 nm 以下では、上部の ナノバーと下部のナノバーの間の温度差の符号反転が予 想される. 図8に、ナノバーの長さが 185 nm と 210 nm の場合の熱分布を示す.同じ形状のナノ構造体を作製し, 実験も行った.図9のSEM画像は、同じ入射光条件でVO2 を合成した後のナノ構造を示している.予想通り,長さ 185 nm のナノバー構造では上部と左側のナノバー表面間 で非対称かつ局所的な VO2 成長が達成された一方(図9 (a)),長さ210 nmのナノバー構造では下部のナノバー表 面間でわずかに非対称な成長が達成された.

図9 5.3 mWの左円偏光集光ガウスビームを用いたプ ラズモン支援水熱合成により成長した,非対称でサイ ト選択的な VO₂ナノシェル構造.金ナノバー構造の長 さ:(a) 185 nm, (b) 210 nm. 白線:200 nm.

4. 実験結果

本研究では、最近実証されたレーザー誘起水熱合成法を 応用して、基板上に VO2マイクロ・ナノ構造を直接成長し た.前駆体溶液にガラス基板表面に作製したアルミナコー ト金薄膜およびプラズモンナノ構造体を浸漬し、サンプル の表面に 1064 nm の CW レーザービームを集光した.

厚さ3 nmのアルミナ層でコーティングした厚さ30 nm の金薄膜を局所的に加熱することで、VO2 マイクロ構造を 作製した.アルミナ層は、合成されたVO2構造の接着を促 進するために必要であった.15 mW から21 mW のレーザー パワーを用いて、直径1 µm の円形状のVO2構造を合成し た.VO2 合成反応の温度閾値が高いにもかかわらず、結晶 化したVO2構造の合成を可能にするのに十分な局所的な温 度上昇があったことを示している.VO2 のレーザー誘起水 熱合成は、合成された材料の光吸収による自己触媒プロセ スであることが証明された.マイクロバブルの形成は、合 成反応の急激な停止をもたらし、大幅な温度上昇により VO2 ナノワイヤの結晶化が改善されることがわかった.

続いて、プラズモンナノ構造表面における VO₂のレーザ ー誘起水熱合成について調べた. 同様のプロセスで、VO₂ ナノシェル構造を金ナノディスクおよびナノバー上に成 長させることに成功した. 局在表面プラズモン共鳴の励起 により、金ナノ構造の光熱加熱が強化され、プラズモン支 援水熱合成による効率的な VO₂合成が可能になることがわ かった. さらに、サイズと配向の異なるナノバーからなる プラズモンナノ構造体の局在表面プラズモン共鳴励起を 制御することにより、サイト選択的な VO₂合成が達成され た. 特に、円偏光レーザー光を対称金ナノバー構造に照射 したときに生じるスピン軌道相互作用現象を利用するこ とで、非対称ハイブリッドナノ構造の作製に成功した.

本研究で実証されたレーザー誘起水熱合成とプラズモ ン支援水熱合成技術により,斬新なデザインと機能を持つ, 高度に調整可能なハイブリッド・マイクロ・ナノ光学デバ イスの作製が可能になると確信している.

謝 辞

本研究は、公益財団法人天田財団 2021 年度一般研究開 発助成(課題番号 AF-2021238-C2),および、科研費(課 題番号 20K15145) の助成を受けて実施されたことをここ に記し謝意を示します.また,北海道大学・電子科学研究 所の笹木教授と北海学園大学の藤原教授のお二人に大変 お世話になりました.本研究の一部は、文部科学省 7 テリアル先端リサーチ事業課題(課題番号 JPMXP1223HK0081)として北海道大学の支援を受けて実施 されました.金薄膜と金ナノ構造の作製には、北海道大学 創成科学研究棟オープンファシリティの超高精度電子ビ ーム描画装置およびヘリコンスパッタ装置および原子層 堆積装置を使用しました.金ナノ構造および二酸化バナジ ウムの分析には、北海道大学創成科学研究棟オープンファ シリティの電子顕微鏡およびエネルギー分散型 X 線分析 を使用しました.

参考文献

- L. Novotny and N. Van Hulst, "Antennas for light," Nature Photonics 5, 83-90 (2011).
- N. Yu and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials 13, 139-150 (2014).
- A. I. Kuznetsov, M. L. Brongersma, J. Yao, M. K. Chen, U. Levy, D. P. Tsai, et al. "Roadmap for optical metasurfaces," ACS Photonics 11, 816-865 (2024).
- 4) Z. Shao, X. Cao, H. Luo, and P. Jin, "Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials," NPG Asia Materials 10, 581-605 (2018).
- M. Tazawa, P. Jin, and S. Tanemura, "Optical constants of V_{1-x}W_xO₂ films," Applied Optics 37, 1858-1861 (1998).
- 6) D. Schrecongost, Y. Xiang, J. Chen, C. Ying, H. T. Zhang, M. Yang, P. Gajurel, W. Dai, R. Engel-Herbert, and C. Cen, "Rewritable nanoplasmonics through room-temperature phase manipulations of vanadium dioxide," Nano Letters 20, 7760-7766 (2020).

- A. Tripathi, J. John, S. Kruk, Z. Zhang, H. S. Nguyen, L. Berguiga, P. R. Romeo, R. Orobtchouk, S. Ramanathan, Y. Kivshar, and S. Cueff, "Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials," ACS Photonics 8, 1206-1213 (2021).
- L. Bergamini, B. Chen, D. Traviss, Y. Wang, C. H. de Groot, J. M. Gaskell, D. W. Sheel, N. Zabala, J. Aizpurua, and O. L. Muskens, "Single-nanoantenna driven nanoscale control of the VO2 insulator to metal transition," Nanophotonics 10, 3745-3758 (2021).
- 9) J. Yeo, S. Hong, G. Kim, H. Lee, Y. D. Suh, I. Park, C. P. Grigoropoulos, and S. H. Ko, "Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design," ACS Nano 9, 6059-6068 (2015).
- 10) H. Fujiwara, T. Suzuki, R. Niyuki, and K. Sasaki, "ZnO nanorod array random lasers fabricated by a laser-induced hydrothermal synthesis," New Journal of Physics 18, 103046 (2016).
- H. Fujiwara, T. Suzuki, C. Pin, and K. Sasaki, "Localized ZnO growth on a gold nanoantenna by plasmon-assisted hydrothermal synthesis," Nano Letters 20, 389-394 (2019).
- 12) C. Pin, H. Fujiwara, T. Suzuki, and K. Sasaki, "Photothermal energy conversion in plasmonic nanoantennas as a new path for the local growth of ZnO in nanophotonic devices," Proc. SPIE 11696, 116960H (2021).
- 13) R. Shi, J. Wang, X. Cai, L. Zhang, P. Chen, S. Liu, L. Zhang, W. Ouyang, N. Wang, and C. Cheng, "Axial modulation of metal-insulator phase transition of VO2 nanowires by graded doping engineering for optically readable thermometers," Journal of Physical Chemistry C 121, 24877-24885 (2017).
- 14) S. Liang, Q. Shi, H. Zhu, B. Peng, and W. Huang, "One-step hydrothermal synthesis of W-doped VO2(M) nanorods with a tunable phase-transition temperature for infrared smart windows," ACS Omega 1, 1139-1148 (2016).